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LION18 explores the intersections between machine learning, artificial intel-
ligence, mathematical programming, and algorithms for hard optimization prob-
lems. Therefore, experts from these areas meet each other to discuss new ideas
and methods, challenges, developments, and opportunities in various application
domains.
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tributions (i.e., extended abstracts of novel work) and long contributions (i.e.,
almost 15 pages in which original novel and unpublished work is described).
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Randomized Greedy Sampling for JSSP

Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. The job shop scheduling problem (JSSP) is a fundamental challenge
in the field of operations research and manufacturing, representing the task of op-
timally assigning a set of jobs to a limited number of machines to optimize one or
more objectives, such as minimizing the total processing time or reducing the de-
lay of jobs. In recent years, AI-driven methods have introduced new approaches to
solving the JSSP. Continuous exploration in deep reinforcement learning (DRL)
is currently concentrated on refining strategies to address the JSSP. Established
DRL techniques mostly focus on better modeling and training of the Policy net-
works for solving JSSP problems. This paper explores the utilization of Policy
networks in search algorithms. We propose two novel algorithms, Random Sec-
ond Greedy Choice (RSGC) and Greedy Sampling (GS). RSGC and GS employ
a randomized approach to consider alternative paths, deviating from the primary
heuristic, while adjusting the probability of selecting these paths dynamically
during the search process. Through experimentation, we show the effectiveness
of the proposed algorithms in comparison to the usual greedy first choice infer-
ence technique and the usual sampling method.

Keywords: Job Shop Scheduling, RSGC, GS, GNN, reinforcement learning, limited
discrepancy search, sampling, search algorithms

1 Introduction

The job shop scheduling problem (JSSP) stands as a pivotal challenge in operations re-
search and manufacturing [9]. This problem entails a set of jobs, each bound by specific
processing rules (like the sequential use of assigned machines), across a variety of ma-
chines. The aim here is to optimize certain parameters such as the overall completion
time, workflow duration, or delay minimization.

It is proved that for JSSP instances having more than 2 machines is NP-hard [10].
Therefore, deriving precise solutions for JSSP is generally unfeasible, thereby making
heuristic and approximate strategies more common for practical efficiency [6]. Tradi-
tional approaches to this problem have predominantly relied on search and inference
techniques developed by the constraint programming community [1]. These techniques
effectively utilize constraints to define the relationships and limitations between jobs
and resources, thus enabling efficient exploration of feasible solution spaces and the
identification of optimal or near-optimal schedules [13]. Another common technique
is the Priority dispatching rule (PDR). It is a heuristic method that is widely used in
real-world scheduling systems [17]. However, designing an effective PDR is very time-
consuming, it requires solid domain knowledge for complex JSSP problems. Another
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approach for finding suboptimal solutions is through the help of Deep Learning and
Neural Networks [3], [18]. The method based on learning can generally be categorized
into two paradigms: supervised learning and reinforcement learning (RL). Ongoing re-
search in deep reinforcement learning (DRL) is actively focused on developing new
and improved methods to tackle the JSSP. Existing DRL methods represent Job Shop
Scheduling Problem (JSSP) as a Markov decision process (MDP) and then learn the
Policy network based on DRL. The prevailing trend leans towards refining policy net-
works or MDP formulation to generate better solutions. However, the exploration of
effective search methods on top of the policy networks decisions and the integration of
alternative strategies such as tree search, have received less attention. This indicates a
potential area for further research.

In this paper, we present two search algorithms RSGC, GS, provided by pretrained
Policy network inspired by [11] that utilize the categorical distribution of the pretrained
Policy network to find a solution to JSSP problem. In order to check the effectiveness
of the proposed search methods, we have experimented on 2 public test datasets: TA
dataset [15], and DMU dataset [7]. Then we compare the results of RSGC and GS to
the usual sampling algorithm and the current state-of-the-art results [18].

2 Related Work

The success of Deep Reinforcement Learning (DRL) represents a significant advance-
ment in the field of artificial intelligence. Generally, DRL combines the principles of
deep learning and reinforcement learning, enabling computers to learn complex behav-
iors by interacting with an environment and optimizing actions based on feedback.

In [12] the authors utilized deep Q-network (DQN) to solve a JSSP in semicon-
ductor manufacturing plant. In [18], a new method using Deep Reinforcement Learn-
ing (DRL) is introduced to develop effective Priority Dispatching Rules (PDRs) for
the Job Shop Scheduling Problem (JSSP). The approach involves formulating an MDP
(Markov Decision Process) for PDR-oriented scheduling. This method utilizes a dis-
junctive graph representation of JSSP to capture the states, efficiently integrating oper-
ation dependencies and machine statuses for informed scheduling decisions. Addition-
ally, the paper uses a Graph Isomorphism Network (GIN) strategy that efficiently en-
codes disjunctive graph nodes into fixed-dimensional embeddings. On top of the these
embeddings the authors utilized Proximal Policy Optimization (PPO) algorithm [14] to
train Policy network. [16] introduces a new approach for solving JSSP with DRL. It
addresses the deficiencies in state representation, adding more features. This approach
also models JSSP as a Markov decision process, employing a new state representation
based on bidirectional scheduling. This representation allows the agent to capture more
effective state information and avoid the issue of multiple optimal action selections.
They also utilize the technique of Invalid Action Masking (IAM), which narrows the
search space, steering the agent away from sub-optimal solutions.

Current methods are mostly based on modeling state representation and the archi-
tecture of the models. There are very few papers that use sampling or search algorithms
on top of policy network to solve JSSP. A widely recognized strategy is to facilitate
the step-by-step development of solutions to JSSP problems, guided by a single-shot
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(greedy) policy derived from a neural network, as documented in sources like [18] and
[16]. These methods primarily concentrate on developing robust policy network models,
aiming to elevate the quality of solutions generated in a single iteration as close to the
optimal as possible. However, there is a noticeable scarcity of studies dedicated to find-
ing effective inference methods for neural JSSP. In addition to designing and training
high-quality policy networks, devising an effective inference strategy is equally crucial
to maximize the quality of solutions within a specified time budget. In contrast, neural
construction methods focus on generating solutions by sampling from the neural net-
work’s output probability distributions, a technique highlighted in studies such as [2].
An alternative approach to sampling is the use of Monte-Carlo Tree Search (MCTS) [4],
and its variants [5]. These methods create partial solutions within a search tree using
rollouts. MCTS, requires a lot of resources and long running time. Beam search rep-
resents another method used in combinatorial optimization problems [8]. Nevertheless,
beam search operates on a greedy algorithm, which unconditionally adheres to the neu-
ral network’s predictions, regardless of their accuracy. Like MCTS, Beam search also
requires a lot of resources and long running time. Another approach called Limited Dis-
crepancy Search (LDS) incorporates the idea of deviating from the main heuristic and
sometimes selecting less promising choices [11]. It is based on the idea that sometimes,
choosing solutions that don’t initially seem promising might actually lead to better re-
sults. This approach acknowledges that the most obvious choice is not always the best
one.

In developing our approach, we focus on a key strategy: introducing variations to the
primary heuristic, specifically diverging from the initial greedy choice recommended by
the policy network. This strategy lays the groundwork for our newly designed proba-
bilistic sampling algorithms. The essence of these algorithms lies in the smart utilization
of the Policy network’s probability distribution also incorporating a measure of random-
ness to enrich decision-making processes. By integrating randomness at the beginning
of our algorithm, it diverges from conventional deterministic methods, offering a nu-
anced way to explore the search space. It harnesses the robustness of greedy strategies
while mitigating their inherent limitations through calculated randomness. This hybrid
approach aims to strike a balance between the exploration and exploitation, optimizing
the search process.

3 Preliminary

The Job-Shop Scheduling Problem (JSSP) is formally defined as a problem involving
a set of jobs J and a set of machines M . The size of the JSSP problem instance is
described as N_J × N_M , where N_J represents the number of jobs and N_M the
number of machines. For each job Ji ∈ J , it must be processed through ni machines in
a specified order Oi1 → . . . → Oini , where each Oij (for 1 ≤ j ≤ ni) represents
an operation of Ji with a processing time pij ∈ N. This sequence also includes a
precedence constraint. Each machine can process only one job at a time, and switching
jobs mid-operation is not allowed. The objective of solving a JSSP is to determine a
schedule, that is, a start time Sij for each operation Oij , to minimize the makespan
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Cmax = maxi,j{Cij = Sij + pij} while meeting all constraints. The complexity of a
JSSP instance is given by N_J ×N_M .

Furthermore, a JSSP instance can be represented through a disjunctive graph, a con-
cept well-established in the literature [18]. Let O = {Oij |∀i, j} ∪ {S, T} represent the
set of all operations, including two dummy operations S and T that denote the start-
ing and ending points with zero processing time. A disjunctive graph G = (O,C,D)
is thus a mixed graph (a graph consisting of both directed edges (arcs) and undirected
edges) with O as its vertex set. Specifically, C comprises of directed arcs (conjunctions)
that represent the precedence constraints between operations within the same job, and
D includes undirected arcs (disjunctions) connecting pairs of operations that require
the same machine. Solving a JSSP is equivalent to determining the direction of each
disjunctive arc such that the resulting graph becomes a Directed Acyclic Graph (DAG)
[18]. Markov Decision Process Formulation (MDP), state representation, action space,
state transition follow the methods described in [18]. An action at ∈ At is an eligible
operation at decision step t. The Policy is a neural network π(at|st) that outputs a dis-
tribution over the actions in At. We use the same 2D raw features as in [18], namely a
binary indicator I(O, st) which equals to 1 only if O is scheduled in st, and an integer
CLB(O, st) which is the lower bound of the estimated time of completion (ETC) of O
in st. The training has been done using Proximal Policy algortihm, which is an actor-
critic algorithm [14]. "Actor" denotes the Policy network, whereas the "critic" is a dis-
tinct network that evaluates the outcomes of the decisions made by the Policy network.
Both the Actor (Policy) network and the Critic network have multilayer perceptron ar-
chitecture. We use the same Graph Isomorphism Network (GIN) as feature extractor,
the Actor and the Critic networks as presented in [18]. GIN extracts feature embeddings
of each node in an iterative and non-linear fashion. Then the Policy network uses these
fixed-size embeddings for outputting a distribution over the actions. The training has
been done on 20x20 training instances for 10000 steps. The training is as described in
[18]. Because the Policy network is based on the fixed-sized embeddings outputted by
the GIN network, it is size-agnostic which enables generalization to instances of differ-
ent sizes without requiring any additional training. During the training we sample the
actions according to the probability distribution outputted by the Policy network. Dur-
ing the inference time we utilize our search algorithms over the probability distribution
outputted by the Policy network.

4 Search Algorithm

Finding the right action at at each state st is a search problem, where the Policy net-
work π(at|st) is used as a heuristic. When the π(at|st) is trained and is ready for the
inference, the usual method is to pick the first greedy choice action at, where at is the
action with the highest probability at the state st, according to the categorical probabil-
ity distribution of π(at|st).

Our approach is slightly different; we formulate the problem of selecting the "cor-
rect" action at at each state st as a search problem. Let us denote by T the binary search
tree. At each node ni of the search tree T there are two options: selecting the action
with the highest probability (the first greedy choice), or another action according to the
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probability distribution recommended by π(at|st). Then the height of the search tree T
becomes h = N_J ×N_M . At each node ni the approach of [18] is to always choose
the first greedy choice, action at with the highest probability at the state st. However
as described in [11], always following the heuristic, or in our case only the first greedy
choice recommended by π(at|st), might not lead to the best possible solution. We ar-
gue that doing "discrepancies" or deviating from the first greedy choice of π(at|st) can
sometimes be better. In the context of the search trees, a "discrepancy" refers to a devi-
ation from the most preferred or recommended path, typically represented as taking a
right turn in a binary search tree that is organized based on heuristic evaluations (where
the left path is usually considered the default or the more promising direction based
on some criteria). There is a systematic approach of considering all of the paths in a
binary search tree, as described in [11]. This systematic approach allows the search to
first consider paths that are closely aligned with heuristic recommendations, and only
later to explore less recommended paths. But this method can quickly become unfea-
sible when the search tree is large, in our case when the set of jobs J and a set of
machines M is large. Our Algorithm (RSGC) Random Second Greedy Choice with
Decreasing Probability gets inspiration from [11], but it also utilizes randomness. The
pseudo code of our algorithm is presented in Algorithm 1. Our algorithm has two hyper-
parameters Dmin and Dmax, which are the least possible and the most possible second
greedy choices we can make during the search. At each node ni of the search tree T we
compute the probability (based on the hyperparameters) of selecting the second greedy
choice action. At the beginning, the probability of selecting the second greedy choice
action is high. The probability then decreases as we make more and more greedy sec-
ond choices. The greedy_2nd_action_count is the number of second greedy choices
done so far. Initially, total_num_greedy_2nd_action_count is set to Dmin. The full
search is done using this fixed hyperparameter Dmin obtaining the first makespan. Then
we adjust the value of total_num_greedy_2nd_action_count by increasing it by an
amount of 5% of the height h, obtaining the next makespan. We repeat this process
until total_num_greedy_2nd_action_count reaches Dmax . We then choose the best
makespan.

probability_of_2nd_action = 1− greedy_2nd_action_count
total_num_greedy_2nd_action_count

The idea is that it is harder for the policy network to select correct actions at the
beginning of the search, than at the end. Through extensive experimentation, we found
that it is best to start to do around 0.25h second greedy choice actions. We increment
the value of 0.25h by 0.01h for each subsequent iteration until we reach 0.75h (i.e.,
Dmin = 0.25h and Dmax = 0.75h). This methodical approach facilitates a more
effective exploration of options, thereby aiding in the identification of the optimal path
characterized by the minimal completion time (makespan).

We also have a second similar algorithm called Greedy Sampling (GS). In GS
instead of randomly selecting second probable action in line 14 of the Algorithm 1
(RSGC) we randomly sample an action according to the probability distribution rec-
ommended by the policy network π(at|st). Note that this is not the usual sampling
algorithm, as we decide whether we sample or just take the first greedy choice with
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probability probability_of_2nd_action. In the Experimental section we compare the
results of these two algorithms with the usual sampling algorithm.

Algorithm 1 (RSGC) Random Second Greedy Choice with Decreasing Probability
Require: dataset
Ensure: Results list
1: h← N_J ×N_M
2: Dmin ← integer(0.25× h)
3: Dmax ← integer(0.75× h)
4: Initialize results list
5: for each data in dataset do
6: Initialize best makespan tracking list
7: for total_num_greedy_2nd_action_count in Dmin to Dmax do
8: Reset environment with data
9: Initialize episode reward and greedy_2nd_action_count

10: while not Terminal do
11: categorical_policy_distribution← inference with policy network π(at|st)
12: probability_of_2nd_action = 1− greedy_2nd_action_count

total_num_greedy_2nd_action_count

r ∼ Uniform(0, 1)
13: if r < probability_of_2nd_action then
14: Select the second probable action from categorical_policy_distribution
15: Increment greedy_2nd_action_count
16: else
17: Greedily select the most probable action from categorical_policy_distribution
18: end if
19: Execute the action
20: end while
21: Update best makespan if current makespan is better
22: Record makespan
23: end for
24: Save results for current data instance
25: end for
26: return Results list

5 Experimental Results

In order to show the effectiveness of our searching algorithm, we have conducted ex-
periments on well known TA dataset [15], and DMU dataset [7]. The Policy network
is trained on instances of size N_J = 20 and N_M = 20. We also compare the re-
sults with those of [18]. Each run of our search algorithm makes (Dmax −Dmin)× h
calls to the Policy network, where h = N_J × N_M is the height of the search tree.
During the experiments we have repeated the search algorithms 10 times and noted the
overall minimum and the average makespans on the corresponding tables. We compare
the makespans of (RSGC) Algorithm 1 with Greedy Sampling (Ours-GS). The two al-
gorithms just differ on line 14 of the Algorithm 1, where instead of the Greedy second
choice we randomly sample an action from the probability distribution provided by the
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pre-trained Policy network. For the Taillard dataset instances 50 × 15, 50 × 20 and
100 × 20 and also for the DMU dataset 40 × 15, 40 × 20, 50 × 15, 50 × 20 we com-
pared the best result of [18], which was inferred with Policy network trained on 30×20
instances. We have also tried to run beam search algorithm, however we had to keep
many copies of the environment, and due to memory constraints it was unfeasible.

5.1 Result on Taillard’s Benchmark Dataset

Table 1: Results on Taillard’s Benchmark (Part I). Ours - RSGC is the result of the Algorithm 1. In
Ours-GS instead of randomly selecting second probable action in line 14 of the Algorithm 1 (RSGC)
we randomly sample an action according to the probability distribution recommended by the policy
network π(at|st). We repeat each experiment 10 times due to the algorithm’s randomness and record
the minimum and the average makespan across the 10 experiment. The "Samp (min)" and the "Samp
(avg)" columns are the results of the usual sampling method. The "UB" column represents the best-
known solutions from literature, with "*" indicating optimal solutions.

Instance L2D Ours-RS (min) Ours-RS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
15x15

Ta01 1443 (17.22%) 1401 (13.81%) 1413.4 (14.79%) 1387 (12.66%) 1403.9 (14.03%) 1444(17.30%) 1448.3(17.65%) 1231*
Ta02 1544 (24.12%) 1404 (12.86%) 1404.0 (12.86%) 1361 (9.40%) 1394 (12.06%) 1447(16.32%) 1462.0(17.52%) 1244*
Ta03 1440 (18.23%) 1420 (16.59%) 1420.6 (16.64%) 1408 (15.60%) 1430.1 (17.40%) 1447(18.80%) 1452.6(19.26%) 1218*
Ta04 1637 (39.32%) 1412 (20.17%) 1412.7 (20.23%) 1423 (21.11%) 1433.8 (22.04%) 1460(24.26%) 1484.0(26.30%) 1175*
Ta05 1619 (32.27%) 1394 (13.89%) 1410.0 (15.20%) 1431 (16.91%) 1435.7 (17.29%) 1437(17.40%) 1448.0(18.30%) 1224*
Ta06 1601 (29.32%) 1392 (12.44%) 1401.8 (13.23%) 1413 (14.12%) 1418.3 (14.55%) 1444(16.64%) 1444.6(16.69%) 1238*
Ta07 1568 (27.79%) 1402 (14.26%) 1411.5 (15.03%) 1384 (12.78%) 1392.3 (13.45%) 1451(18.26%) 1469.0(19.72%) 1227*
Ta08 1468 (20.62%) 1372 (12.73%) 1380.1 (13.39%) 1404 (15.36%) 1406.4 (15.53%) 1425(17.09%) 1427.3(17.28%) 1217*
Ta09 1627 (27.70%) 1483 (16.41%) 1491.4 (17.05%) 1467 (15.15%) 1469.4 (15.34%) 1544(21.19%) 1546.0(21.35%) 1274*
Ta10 1527 (23.04%) 1401 (12.89%) 1419.1 (14.34%) 1437 (15.79%) 1444.4 (16.39%) 1444(16.36%) 1466.6(18.18%) 1241*

20x15
Ta11 1794 (32.19%) 1583 (16.65%) 1622.4 (19.57%) 1617 (19.16%) 1631.1 (20.18%) 1668(22.92%) 1684.1(24.10%) 1357*
Ta12 1805 (32.01%) 1590 (16.31%) 1595.1 (16.68%) 1568 (14.70%) 1573.6 (15.11%) 1658(21.29%) 1665.0(21.80%) 1367*
Ta13 1932 (43.85%) 1628 (21.22%) 1634.5 (21.69%) 1619 (20.55%) 1619.0 (20.55%) 1693(26.06%) 1697.0(26.36%) 1343*
Ta14 1664 (23.72%) 1596 (18.66%) 1600.3 (18.97%) 1604 (19.26%) 1624.7 (20.78%) 1640(21.93%) 1651.1(22.76%) 1345*
Ta15 1730 (29.20%) 1625 (21.36%) 1629.1 (21.65%) 1633 (21.96%) 1640.1 (22.47%) 1690(26.21%) 1694.9(26.58%) 1339*
Ta16 1710 (25.74%) 1613 (18.60%) 1641.6 (20.71%) 1598 (17.50%) 1610.1 (18.39%) 1693(24.49%) 1696.3(24.73%) 1360*
Ta17 1897 (29.75%) 1728 (18.19%) 1728.0 (18.19%) 1735 (18.66%) 1736.5 (18.76%) 1797(22.91%) 1798.0 (22.98%) 1462*
Ta18 1794 (28.51%) 1664 (19.20%) 1667.9 (19.49%) 1675 (20.00%) 1679.0 (20.34%) 1712(22.64%) 1712.3(22.66%) 1396
Ta19 1682 (26.28%) 1591 (19.44%) 1602.2 (20.29%) 1592 (19.52%) 1603.5 (20.39%) 1650(23.87%) 1653.8(24.16%) 1332*
Ta20 1739 (28.97%) 1635 (21.29%) 1635.0 (21.29%) 1628 (20.77%) 1657.7 (22.98%) 1666 (23.59%) 1666.3 (23.61%) 1348*

20x20
Ta21 2252 (37.18%) 1964 (19.61%) 1973.5 (20.18%) 1905 (16.02%) 1914.6 (16.60%) 2021(23.08%), 2044.0(24.48%) 1642*
Ta22 2102 (31.38%) 1887 (17.94%) 1895.7 (18.48%) 1853 (15.81%) 1854.6 (15.91%) 1950(21.88%) 1953.7(22.11%) 1600
Ta23 2085 (33.91%) 1838 (18.05%) 1841.0 (18.24%) 1818 (16.76%) 1822.9 (17.05%) 1902(22.16%) 1918.8(23.24%) 1557
Ta24 2200 (33.82%) 1930 (17.40%) 1931.2 (17.48%) 1907 (16.00%) 1916.2 (16.54%) 1986(20.80%) 2035.3(23.80%) 1644*
Ta25 2201 (38.00%) 1918 (20.25%) 1924.4 (20.65%) 1903 (19.31%) 1904.6 (19.42%) 1997(25.20%) 2002.2(25.53%) 1595
Ta26 2176 (32.44%) 1961 (19.36%) 1970.4 (19.91%) 1918 (16.73%) 1928.9 (17.38%) 2014(22.58%) 2042.2(24.30%) 1643
Ta27 2132 (26.90%) 2019 (20.18%) 2028.8 (20.76%) 2026 (20.60%) 2026.0 (20.60%) 2092(24.52%) 2099.0(24.94%) 1680
Ta28 2146 (33.94%) 1883 (17.47%) 1886.6 (17.68%) 1833 (14.35%) 1841.5 (14.87%) 1947(21.46%) 1954.8(21.95%) 1603*
Ta29 1952 (20.12%) 1885 (16.00%) 1905.8 (17.28%) 1877 (15.51%) 1897.4 (16.76%) 1937(19.20%) 1984.4( 22.12%) 1625
Ta30 2035 (28.47%) 1868 (17.93%) 1868.8 (17.98%) 1876 (18.43%) 1892.2 (19.44%) 1927(21.65%) 1934.6(22.13%) 1584

30x15
Ta31 2565 (45.37%) 2115 (19.91%) 2121.0 (20.24%) 2169 (22.94%) 2183.5 (23.81%) 2170(23.02%) 2183.1(23.76%) 1764*
Ta32 2388 (33.87%) 2212 (23.99%) 2212.0 (23.99%) 2230 (24.94%) 2242.1 (25.65%) 2303(29.09%) 2318.0(29.93%) 1784
Ta33 2324 (29.80%) 2204 (23.09%) 2219.0 (23.92%) 2292 (28.03%) 2299.5 (28.45%) 2301(28.48%) 2307.8(28.86%) 1791
Ta34 2332 (27.60%) 2207 (20.75%) 2226.3 (21.81%) 2225 (21.74%) 2225.7 (21.79%) 2250(23.09%) 2262.7(23.78%) 1828*
Ta35 2505 (24.82%) 2250 (12.08%) 2260.5 (12.63%) 2256 (12.39%) 2256.0 (12.39%) 2293(14.25%) 2303.0(14.75%) 2007*
Ta36 2497 (37.31%) 2243 (23.31%) 2252.1 (23.83%) 2253 (23.87%) 2259.1 (24.22%) 2318(27.43%) 2320.6( 27.58%) 1819*
Ta37 2325 (31.28%) 2146 (21.20%) 2157.1 (21.79%) 2159 (21.93%) 2168.0 (22.44%) 2181(23.15%) 2213.4(24.98%) 1771*
Ta38 2302 (37.61%) 2046 (22.30%) 2048.6 (22.45%) 2014 (20.38%) 2017.8 (20.63%) 2079(24.27%) 2114.9(26.41%) 1673*
Ta39 2410 (34.26%) 2152 (19.94%) 2152.8 (19.99%) 2160 (20.33%) 2166.8 (20.77%) 2181(21.50%) 2199.7(22.55%) 1795*
Ta40 2140 (28.21%) 2002 (19.95%) 2018.5 (20.93%) 1989 (19.17%) 1989.0 (19.17%) 2067(23.85%) 2083.4(24.83%) 1669

Continued on next page
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Table 1 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB

30x20
Ta41 2667 (33.02%) 2489 (24.14%) 2507.5 (25.06%) 2490 (24.19%) 2496.4 (24.51%) 2540(26.68%) 2568.7(28.11%) 2005
Ta42 2664 (37.53%) 2383 (23.03%) 2383.0 (23.03%) 2358 (21.73%) 2373.1 (22.51%) 2479(27.98%) 2490.3(28.56%) 1937
Ta43 2431 (31.69%) 2347 (27.14%) 2364.8 (28.10%) 2332 (26.33%) 2332.0 (26.33%) 2437(32.02%) 2457.6(33.13%) 1846
Ta44 2714 (37.14%) 2512 (26.93%) 2515.2 (27.09%) 2471 (24.86%) 2482.2 (25.43%) 2590(30.87%) 2595.8(31.17%) 1979
Ta45 2637 (31.85%) 2435 (21.75%) 2440.7 (22.03%) 2380 (19.00%) 2410.8 (20.54%) 2518(25.90%) 2530.5(26.53%) 2000
Ta46 2776 (38.38%) 2523 (25.77%) 2531.7 (26.21%) 2435 (21.39%) 2449.6 (22.11%) 2590(29.11%) 2595.5(29.39%) 2006
Ta47 2476 (31.07%) 2364 (25.15%) 2381.0 (26.05%) 2344 (24.09%) 2354.6 (24.65%) 2418(28.00%) 2429.0(28.59%) 1889
Ta48 2490 (28.55%) 2397 (23.75%) 2401.4 (24.00%) 2339 (20.75%) 2354.3 (21.54%) 2458(26.90%) 2462.9(27.15%) 1937
Ta49 2556 (30.34%) 2362 (20.45%) 2363.8 (20.54%) 2349 (19.79%) 2365.3 (20.62%) 2448(24.83%) 2459.0(25.40%) 1961
Ta50 2628 (36.66%) 2395 (24.54%) 2395.0 (24.54%) 2411 (25.38%) 2417.4 (25.71%) 2462(28.03%) 2463.7(28.12%) 1923

50x15
Ta01 3599 (30.40%) 3361 (21.78%) 3368.2 (22.04%) 3417 (23.80%) 3417.0 (23.80%) 3404(23.33%) 3409.2(23.52%) 2760*
Ta02 3341 (21.23%) 3212 (16.55%) 3212.0 (16.55%) 3249 (17.89%) 3270.0 (18.65%) 3304(19.88%) 3313.8(20.24%) 2756*
Ta03 3186 (17.26%) 3000 (10.42%) 3004.1 (10.57%) 3045 (12.07%) 3050.1 (12.26%) 3084(13.51%) 3091.6(13.79%) 2717*
Ta04 3266 (15.04%) 3120 (9.90%) 3132.6 (10.34%) 3134 (10.39%) 3134.0 (10.39%) 3183(12.12%) 3201.0(12.75%) 2839*
Ta05 3232 (20.64%) 3132 (16.91%) 3140.1 (17.21%) 3111 (16.13%) 3124.8 (16.64%) 3196(19.30%) 3226.3(20.43%) 2679*
Ta06 3378 (21.47%) 3134 (12.69%) 3146.7 (13.15%) 3169 (13.95%) 3175.4 (14.18%) 3197(14.96%) 3206.4(15.30%) 2781*
Ta07 3471 (17.94%) 3310 (12.47%) 3316.6 (12.69%) 3349 (13.80%) 3353.6 (13.95%) 3340(13.49%) 3357.1(14.07%) 2943*
Ta08 3732 (29.36%) 3289 (14.00%) 3296.6 (14.27%) 3276 (13.55%) 3300.3 (14.40%) 3350(16.12%) 3352.9(16.22%) 2885*
Ta09 3381 (27.34%) 3131 (17.93%) 3136.8 (18.15%) 3129 (17.85%) 3129.0 (17.85%) 3151(18.68%) 3174.4(19.56%) 2655*
Ta10 3352 (23.10%) 3035 (11.46%) 3045.5 (11.84%) 3065 (12.56%) 3067.7 (12.66%) 3076(12.96%) 3078.7(13.06%) 2723*

50x20
Ta11 3654 (27.40%) 3447 (20.18%) 3464.6 (20.78%) 3472 (21.04%) 3474.5 (21.11%) 3534(23.22%) 3551.2(23.82%) 2868*
Ta12 3722 (29.73%) 3419 (19.16%) 3461.7 (20.65%) 3408 (18.78%) 3411.7 (18.92%) 3544(23.53%) 3555.3(23.92%) 2869*
Ta13 3536 (28.32%) 3143 (14.08%) 3172.7 (15.17%) 3147 (14.23%) 3165.5 (14.88%) 3253(18.08%) 3257.2(18.23%) 2755*
Ta14 3631 (34.39%) 3143 (16.32%) 3149.1 (16.54%) 3132 (15.91%) 3135.2 (16.03%) 3239(19.87%) 3239.8(19.90%) 2702*
Ta15 3359 (23.28%) 3233 (18.67%) 3242.0 (18.98%) 3186 (16.92%) 3193.3 (17.19%) 3325(22.02%) 3338.4(22.51%) 2725*
Ta16 3555 (24.96%) 3296 (15.85%) 3304.1 (16.14%) 3270 (14.94%) 3275.5 (15.13%) 3374(18.59%) 3393.2(19.27%) 2845*
Ta17 3567 (26.27%) 3423 (21.17%) 3428.3 (21.36%) 3384 (19.79%) 3403.6 (20.48%) 3463(22.58%) 3490.4(23.55%) 2825*
Ta18 3680 (32.18%) 3168 (13.79%) 3168.0 (13.79%) 3178 (14.15%) 3196.9 (14.83%) 3300(18.53%) 3304.7(18.70%) 2784*
Ta19 3592 (16.97%) 3482 (13.38%) 3494.7 (13.80%) 3480 (13.32%) 3505.8 (14.16%) 3559(15.89%) 3560.5(15.94%) 3071*
Ta20 3643 (21.64%) 3551(18.56%) 3601 (20.23%) 3482 (16.26%) 3490.8 (16.55%) 3596(20.07%) 3599.7(20.19%) 2995*

100x20
Ta21 6452 (18.08%) 6049 (10.71%) 6057.0 (10.85%) 6023 (10.23%) 6036.0 (10.47%) 6064(10.98%) 6084.2(11.35%) 5464*
Ta22 5695 (9.92%) 5609 (8.26%) 5615.0 (8.38%) 5540 (6.93%) 5540.6 (6.94%) 5667(9.38%) 5698.1(9.98%) 5181*
Ta23 6462 (16.06%) 6148 (10.42%) 6168.4 (10.78%) 6109 (9.72%) 6109.0 (9.72%) 6139(10.26%) 6139.0(10.26%) 5568*
Ta24 5885 (10.23%) 5717 (7.08%) 5731.0 (7.34%) 5749 (7.68%) 5749.0 (7.68%) 5775( 8.17%) 5780.0(8.26%) 5339*
Ta25 6355 (17.86%) 6167 (14.37%) 6174.4 (14.51%) 6247 (15.86%) 6276.8 (16.41%) 6137(13.82%) 6177.1(14.56%) 5392*
Ta26 6135 (14.84%) 5890 (10.26%) 5890.0 (10.26%) 5905 (10.54%) 5932.0 (11.04%) 5909(10.61%) 6019.2(12.68%) 5342*
Ta27 6056 (11.41%) 5768 (6.11%) 5791.2 (6.53%) 5777 (6.27%) 5799.2 (6.68%) 5824(7.14%) 5879.0(8.15%) 5436*
Ta28 6101 (13.11%) 5924 (9.83%) 5926.0 (9.86%) 5984 (10.94%) 5985.4 (10.96%) 5920( 9.75%) 5958.0(10.46%) 5394*
Ta29 5943 (10.92%) 5782 (7.91%) 5782.0 (7.91%) 5738 (7.09%) 5747.4 (7.27%) 5839(8.98%) 5850.0(9.18%) 5358*
Ta30 5892 (13.68%) 5692 (9.82%) 5705.2 (10.08%) 5695 (9.88%) 5705.0 (10.07%) 5707( 10.11%) 5717.0(10.30%) 5183*

Table 2: Results on DMU’s Benchmark (Part I). Ours - RSGC is the result of the Algorithm 1. In
Ours-GS instead of randomly selecting second probable action in line 14 of the Algorithm 1 (RSGC)
we randomly sample an action according to the probability distribution recommended by the policy
network π(at|st). We repeat each experiment 10 times due to the algorithm’s randomness and record
the minimum and the average makespan across the 10 experiment. The "Samp (min)" and the "Samp
(avg)" columns are the results of the usual sampling method. The "UB" column represents the best-
known solutions from literature, with "*" indicating optimal solutions.

Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
20x15

Dmu01 3323 (29.65%) 3132 (22.20%) 3132.0 (22.20%) 3198 (24.78%) 3204.7 (25.04%) 3218(25.56%) 3270.4(27.60%) 2563
Dmu02 3630 (34.15%) 3269 (20.81%) 3302.5 (22.04%) 3266 (20.69%) 3270.8 (20.87%) 3360(24.17%) 3363.8(24.31%) 2706
Dmu03 3660 (34.02%) 3287 (20.36%) 3287.0 (20.36%) 3375 (23.58%) 3384.4 (23.93%) 3392(24.20%) 3429.9(25.59%) 2731*
Dmu04 3816 (42.97%) 3171 (18.81%) 3192.9 (19.63%) 3261 (22.18%) 3267.4 (22.42%) 3229(20.98%) 3286.7(23.14%) 2669
Dmu05 3897 (41.76%) 3377 (22.84%) 3392.0 (23.39%) 3394 (23.46%) 3394.0 (23.46%) 3465(26.05%) 3491.5(27.01%) 2749*
Dmu41 4316 (32.88%) 4070 (25.31%) 4085.2 (25.78%) 4050 (24.69%) 4070.0 (25.31%) 4250(30.85%) 4256.8(31.06%) 3248
Dmu42 4858 (43.30%) 4493 (32.54%) 4493.0 (32.54%) 4526 (33.51%) 4541.3 (33.96%) 4650(37.17%) 4654.6(37.30%) 3390
Dmu43 4887 (42.02%) 4373 (27.09%) 4373.0 (27.09%) 4445 (29.18%) 4455.1 (29.47%) 4531(31.68%) 4558.4(32.47%) 3441

Continued on next page
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Table 2 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
Dmu44 5151 (47.68%) 4592 (31.65%) 4604.9 (32.02%) 4637 (32.94%) 4637.0 (32.94%) 4692(34.52%) 4807.5(37.83%) 3488
Dmu45 4615 (41.05%) 4377 (33.77%) 4387.4 (34.09%) 4387 (34.08%) 4399.6 (34.46%) 4454(36.12%) 4472.4(36.69%) 3272

20x20
Dmu06 4358 (34.34%) 3880 (19.61%) 3890.2 (19.92%) 3844 (18.50%) 3876.0 (19.48%) 3977(22.60%) 4011.5(23.66%) 3244
Dmu07 3671 (20.51%) 3621 (18.88%) 3640.3 (19.51%) 3621 (18.88%) 3637.8 (19.43%) 3733(22.55%) 3750.2(23.12%) 3046
Dmu08 4048 (26.98%) 3726 (16.88%) 3760.2 (17.95%) 3730 (17.00%) 3755.1 (17.79%) 3882(21.77%) 3946.3(23.79%) 3188
Dmu09 4482 (44.95%) 3790 (22.57%) 3817.8 (23.47%) 3695 (19.50%) 3695.0 (19.50%) 3893(25.91%) 3925.0(26.94%) 3092
Dmu10 4021 (34.75%) 3494 (17.09%) 3551.9 (19.03%) 3519 (17.93%) 3550.2 (18.97%) 3578(19.91%) 3632.5(21.73%) 2984
Dmu46 5876 (45.63%) 5066 (25.55%) 5066.0 (25.55%) 5063 (25.48%) 5085.5 (26.03%) 5310(31.60%) 5314.3(31.71%) 4035
Dmu47 5771 (46.51%) 4930 (25.16%) 4965.7 (26.06%) 4872 (23.69%) 4962.5 (25.98%) 5177(31.43%) 5227.6(32.71%) 3939
Dmu48 5034 (33.78%) 4725 (25.56%) 4741.0 (25.99%) 4640 (23.31%) 4667.0 (24.02%) 4891(29.98%) 4906.5(30.39%) 3763
Dmu49 5470 (47.44%) 4671 (25.90%) 4683.3 (26.23%) 4731 (27.52%) 4738.8 (27.73%) 4952(33.48%) 4984.1(34.34%) 3710
Dmu50 5314 (42.50%) 4862 (30.38%) 4880.1 (30.87%) 4837 (29.71%) 4845.5 (29.94%) 5052(35.48%) 5088.6(36.46%) 3729

30x15
Dmu11 4435 (29.30%) 4183 (21.95%) 4194.5 (22.29%) 4232 (23.38%) 4236.5 (23.51%) 4282(24.84%) 4285.3(24.94%) 3430
Dmu12 4864 (39.17%) 4247 (21.52%) 4260.3 (21.90%) 4247 (21.52%) 4254.5 (21.73%) 4414(26.29%) 4431.4(26.79%) 3495
Dmu13 4918 (33.60%) 4486 (21.87%) 4515.2 (22.66%) 4457 (21.08%) 4478.5 (21.67%) 4613(25.32%) 4641.5(26.09%) 3681*
Dmu14 4130 (21.69%) 3969 (16.94%) 3977.7 (17.20%) 3930 (15.79%) 3933.5 (15.90%) 4085(20.36%) 4097.5(20.73%) 3394*
Dmu15 4392 (31.38%) 4054 (21.27%) 4064.0 (21.57%) 4072 (21.81%) 4076.4 (21.94%) 4114(23.06%) 4138.1(23.78%) 3343*
Dmu51 6241 (49.77%) 5919 (42.04%) 5951.7 (42.83%) 6090 (46.15%) 6095.2 (46.27%) 6093(46.22%) 6128.1(47.06%) 4167
Dmu52 6714 (55.74%) 6032 (39.92%) 6093.2 (41.34%) 6081 (41.06%) 6172.6 (43.18%) 6235(44.63%) 6266.0(45.35%) 4311
Dmu53 6724 (53.03%) 6010 (36.78%) 6096.0 (38.73%) 6163 (40.26%) 6187.8 (40.82%) 6287(43.08%) 6308.5(43.57%) 4394
Dmu54 6522 (49.52%) 6034 (38.33%) 6050.8 (38.72%) 6072 (39.20%) 6072.0 (39.20%) 6201(42.16%) 6234.9(42.94%) 4362
Dmu55 6639 (55.44%) 5917 (38.54%) 5917.0 (38.54%) 5931 (38.87%) 5945.2 (39.20%) 6031(41.21%) 6042.4(41.48%) 4271

30x20
Dmu16 4593 (32.04%) 4462 (18.95%) 4656.7 (24.15%) 4696 (25.19%) 4713.5 (25.66%) 4773(27.24%) 4801.6(28.00%) 3751
Dmu17 5379 (41.03%) 4747 (24.46%) 4751.0 (24.57%) 4710 (23.49%) 4736.9 (24.20%) 4907(28.65%) 4930.0(29.26%) 3814
Dmu18 5100 (32.67%) 4639 (20.68%) 4651.8 (21.01%) 4546 (18.26%) 4564.4 (18.74%) 4804(24.97%) 4834.9(25.77%) 3844*
Dmu19 4889 (29.75%) 4659 (23.65%) 4668.5 (23.90%) 4651 (23.43%) 4678.5 (24.16%) 4780(26.85%) 4792.8(27.19%) 3768
Dmu20 4859 (30.97%) 4442 (19.73%) 4489.7 (21.02%) 4388 (18.27%) 4441.5 (19.72%) 4554(22.75%) 4628.2(24.75%) 3710
Dmu56 7328 (48.31%) 6784 (37.30%) 6784.0 (37.30%) 6861 (38.86%) 6861.7 (38.87%) 6924(40.13%) 6998.7(41.65%) 4941
Dmu57 6704 (44.02%) 6421 (37.94%) 6435.0 (38.24%) 6428 (38.09%) 6509.0 (39.83%) 6625(42.32%) 6638.0(42.60%) 4655
Dmu58 6721 (42.76%) 6322 (34.28%) 6353.7 (34.96%) 6398 (35.90%) 6427.9 (36.53%) 6564(39.42%) 6584.0(39.85%) 4708
Dmu59 7109 (53.74%) 6388 (38.15%) 6420.2 (38.85%) 6486 (40.27%) 6492.4 (40.41%) 6398(38.37%) 6579.3(42.29%) 4624
Dmu60 6632 (39.47%) 6400 (34.60%) 6471.4 (36.10%) 6459 (35.84%) 6465.4 (35.97%) 6631(39.45%) 6665.5(40.18%) 4755

40x15
Dmu21 5317 (21.42%) 5034 (14.91%) 5069.7 (15.75%) 5072 (15.82%) 5077.8 (15.95%) 5162(17.85%) 5235.3(19.53%) 4380*
Dmu22 5534 (17.12%) 5293 (12.03%) 5360.3 (13.45%) 5316 (12.51%) 5331.9 (12.85%) 5432(14.96%) 5475.5(15.88%) 4725*
Dmu23 5620 (20.41%) 5171 (10.78%) 5195.8 (11.30%) 5178 (10.92%) 5179.4 (10.94%) 5291(13.35%) 5303.3(13.61%) 4668*
Dmu24 5753 (23.77%) 5138 (10.54%) 5138.0 (10.54%) 5224 (12.41%) 5236.5 (12.68%) 5324(14.54%) 5353.5(15.18%) 4648*
Dmu25 4775 (14.66%) 4659 (11.89%) 4662.2 (11.97%) 4618 (10.90%) 4618.0 (10.90%) 4755(14.19%) 4756.4(14.23%) 4164*
Dmu61 8203 (58.62%) 7634 (47.58%) 7685.5 (48.54%) 7818 (51.14%) 7829.2 (51.37%) 7802(50.85%) 7829.1(51.37%) 5172
Dmu62 8091 (53.66%) 7528 (42.96%) 7561.4 (43.59%) 7810 (48.32%) 7810.0 (48.32%) 7768(47.54%) 7799.9(48.15%) 5265
Dmu63 8031 (50.76%) 7543 (41.66%) 7597.2 (42.69%) 7610 (42.92%) 7621.2 (43.15%) 7636(43.37%) 7744.8(45.41%) 5326
Dmu64 7738 (47.39%) 7628 (45.20%) 7670.0 (46.10%) 7757 (47.66%) 7773.5 (47.97%) 7717(46.99%) 7797.6(48.53%) 5250
Dmu65 7577 (46.07%) 7345 (41.58%) 7370.5 (42.00%) 7648 (47.40%) 7648.0 (47.40%) 7583(46.11%) 7584.0(46.13%) 5190

40x20
Dmu26 5946 (27.94%) 5646 (21.51%) 5662.9 (21.86%) 5583 (20.14%) 5592.2 (20.34%) 5769(24.14%) 5823.2(25.31%) 4647*
Dmu27 6418 (32.38%) 5874 (21.14%) 5902.2 (21.74%) 5849 (20.63%) 5851.7 (20.68%) 6014(24.05%) 6046.4(24.72%) 4848*
Dmu28 5986 (27.57%) 5610 (19.56%) 5622.8 (19.81%) 5604 (19.43%) 5609.8 (19.54%) 5831(24.28%) 5848.5(24.65%) 4692*
Dmu29 6051 (29.00%) 5776 (23.09%) 5776.0 (23.09%) 5685 (21.14%) 5685.0 (21.14%) 5928(26.37%) 5942.8(26.69%) 4691*
Dmu30 5988 (26.58%) 5584 (18.01%) 5676.0 (19.95%) 5718 (20.85%) 5718.0 (20.85%) 5791(22.38%) 5847.2(23.57%) 4732*
Dmu66 8475 (48.24%) 8069 (41.14%) 8106.8 (41.80%) 8099 (41.67%) 8129.0 (42.19%) 8224(43.85%) 8265.6(44.57%) 5717
Dmu67 8832 (51.94%) 8227 (41.53%) 8259.6 (42.09%) 8252 (41.96%) 8318.0 (43.09%) 8361(43.83%) 8377.3(44.11%) 5813
Dmu68 8693 (50.58%) 8198 (42.01%) 8259.6 (43.07%) 8364 (44.88%) 8432.7 (46.07%) 8348(44.60%) 8348.0(44.60%) 5773
Dmu69 8634 (51.23%) 8107 (42.00%) 8159.4 (42.92%) 8202 (43.67%) 8228.3 (44.13%) 8209(43.79%) 8240.7(44.34%) 5709
Dmu70 8735 (48.33%) 8341 (41.64%) 8375.2 (42.22%) 8230 (39.75%) 8244.0 (39.99%) 8416(42.91%) 8531.2(44.86%) 5889

50x15
Dmu31 7156 (26.88%) 6400 (13.48%) 6423.2 (13.89%) 6512 (15.48%) 6524.3 (15.70%) 6552(16.17%) 6603.6(17.09%) 5640*
Dmu32 6506 (9.76%) 6025 (1.65%) 6032.9 (1.78%) 6168 (4.06%) 6175.2 (4.18%) 6133(3.48%) 6137.6(3.55%) 5927*
Dmu33 6192 (8.08%) 6001 (4.75%) 6016.9 (4.97%) 5898 (2.96%) 5929.1 (3.51%) 6015(5.01%) 6117.5(6.80%) 5728*
Dmu34 6257 (16.18%) 5948 (10.47%) 5954.1 (10.57%) 5868 (8.95%) 5892.4 (9.41%) 6133(13.89%) 6169.5(14.57%) 5385*
Dmu35 6302 (11.83%) 6012 (6.70%) 6021.3 (6.85%) 6012 (6.70%) 6015.2 (6.74%) 6084(7.97%) 6129.8(8.78%) 5635*
Dmu71 9797 (57.24%) 9440 (51.47%) 9461.6 (51.81%) 9521 (52.78%) 9526.9 (52.88%) 9571(53.55%) 9585.6(53.79%) 6233
Dmu72 9926 (53.11%) 9681 (49.33%) 9681.0 (49.33%) 9650 (48.85%) 9670.9 (49.17%) 9688(49.44%) 9710.2(49.78%) 6483

Continued on next page
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Table 2 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
Dmu73 9933 (61.17%) 9298 (50.87%) 9365.8 (51.97%) 9545 (54.88%) 9545.0 (54.88%) 9447(53.29%) 9469.5(53.65%) 6163
Dmu74 9833 (58.09%) 9440 (51.77%) 9461.0 (52.11%) 9607 (54.45%) 9618.0 (54.63%) 9560(53.70%) 9581.0(54.04%) 6220
Dmu75 9892 (59.63%) 9287 (49.86%) 9300.9 (50.09%) 9299 (50.06%) 9307.0 (50.19%) 9397(51.64%) 9448.0(52.46%) 6197

50x20
Dmu36 7470 (32.89%) 6665 (18.57%) 6745.3 (20.00%) 6787 (20.74%) 6790.5 (20.81%) 6825(21.42%) 6840.6(21.70%) 5621*
Dmu37 7296 (24.70%) 6843 (16.95%) 6873.0 (17.47%) 6866 (17.35%) 6897.9 (17.89%) 6895(17.84%) 6927.4(18.40%) 5851*
Dmu38 7410 (29.70%) 6968 (21.97%) 7012.0 (22.74%) 7136 (24.91%) 7149.7 (25.15%) 7075(23.84%) 7079.8(23.92%) 5713*
Dmu39 6827 (18.79%) 6580 (14.49%) 6601.6 (14.87%) 6434 (11.95%) 6443.8 (12.12%) 6654(15.78%) 6706.7(16.70%) 5747*
Dmu40 7325 (31.34%) 6718 (20.46%) 6771.7 (21.42%) 6773 (21.45%) 6776.1 (21.50%) 6835(22.56%) 6841.6(22.68%) 5577*
Dmu76 9698 (42.35%) 9823 (44.18%) 9851.4 (44.60%) 9991 (46.65%) 9997.3 (46.74%) 9922(45.63%) 9963.5(46.24%) 6813
Dmu77 10693 (56.74%) 9930 (45.56%) 9940.8 (45.72%) 9948 (45.82%) 9974.4 (46.21%) 10070(47.61%) 10070.0(47.61%) 6822
Dmu78 9986 (47.50%) 9940 (46.82%) 10013.6 (47.91%) 9990 (47.56%) 10029.2 (48.14%) 10126(49.57%) 10151.5(49.95%) 6770
Dmu79 10936 (56.90%) 10303 (47.82%) 10310.6 (47.93%) 10181 (46.07%) 10181.0 (46.07%) 10457(50.03%) 10486.5(50.45%) 6970
Dmu80 9875 (47.70%) 9674 (44.69%) 9742.9 (45.73%) 9859 (47.46%) 9874.8 (47.69%) 9732(45.56%) 9803.5(46.3%) 6686

6 Conclusion

In this study, we present RSGC and GS, algorithms designed to optimize JSSP through
Policy network-guided search. By incorporating second greedy choices and policy net-
work sampling methods with decreasing probabilities RSGC offers a balance between
exploration and exploitation in the search space, thereby mitigating the risk of finding
solutions having larger makespan. Our systematic approach to adjusting the probability
of selecting alternative paths enables efficient exploration of the search tree, leading to
improved makespan. Through extensive experimentation, we establish optimal param-
eters for RSGC and GS, enhancing its performance across two benchmark datasets. We
also compare the minimum makespans and the average makespans using the two algo-
rithms. The experiments showed that the GS algorithm results were slightly better on
most instances, the reason perhaps being that it explored more. Overall, RSGC presents
a promising avenue for enhancing scheduling algorithms, showcasing the potential of
Policy networks in addressing complex optimization challenges.
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Abstract. In this paper, we consider adaptations of Monte Carlo Search
methods on binary decision trees where actions are simulated using
heuristics and where choices are made deterministically or stochastically.
We explain how these adaptations are fitted for combinatorial problems
such as element selection problems in order to compete with other ap-
proximate resolution methods such as metaheuristics. We present re-
sults on a theoretical problem (Set Covering) and on an applied problem
(Pulse Repetition Frequency Selection) with different simulation heuris-
tics. We then discuss the usefulness of these new methods based on
the characteristics of the problems and on the quality of the simulation
heuristics used to construct the decision tree.

Keywords: Tree Search · Monte Carlo Search · Set Cover Problem ·

Radar · Decision Trees · Binary Choices · Heuristic · Simulation

After a general presentation of the selection problems, we detail the two
problems considered. We then introduce Binarized Monte Carlo Search, based
on Monte Carlo Search on particular decision trees. Adaptations of two different
methods are developed. Finally, we present the experimental results obtained
with the new methods on our selection problems and discuss their interests.

1 Selection Problems

Selection problems arise as problems in which a subset of elements must be se-
lected from a given set, usually under given constraints, in order to optimize a
given objective function.

Due to the size of the initial set of candidates and the large number of pos-
sible combinations among them, these problems often manifest as combinatorial
optimization problems. Exact solution methods are therefore not always suitable
for these problems. Approximate resolution methods can be an efficient alter-
native, finding close-to-optimal solutions rather than exact solutions to complex
problems.

A greedy algorithm can quickly and iteratively produce an approximate so-
lution to a selection problem. Its basic idea is to make a locally optimal choice



Binarized Monte Carlo Search for Selection Problems 13

at each step, without considering the consequences of this choice on future steps,
with the hope of finding a globally optimal solution. As long as the solution is
not fully formed, the algorithm assigns a greedy score to all valid candidates
based on a computationally inexpensive function. The validity of those candi-
dates depends on constraints preventing specific combinations of candidates in
some selection problems. The candidate with the highest score is then added to
the solution and removed from the set of available candidates if a solution cannot
be formed by the same candidate more than once. Greedy algorithms are easy
to implement but can provide less than optimal solutions on certain instances.

Another alternative is to use other heuristics, metaheuristics or tree search
procedures. Combinations of these different resolution methods are also increas-
ingly being considered, this is the case in this paper.

1.1 Set Cover Problem

The Set Cover Problem (SCP) is a classic optimization problem in which the
goal is to select, from a collection of subsets whose union equals the universe, the
smallest number of subsets such that their union is also equal to the universe.
This problem is known to be NP-hard [13], meaning that there is no known
efficient algorithm to solve it optimally in polynomial time.

One variant of this problem is the Weighted Set Cover Problem, in which
every set is assigned a positive weight, indicating its cost, and the objective is
to identify a set cover which minimizes the sum of the costs of the chosen sets.

Formulation. The problem can be formally defined as follows:

minimize
∑
j∈J

cjxj (1)

under the constraints
∑
j∈J

aijxj ≥ 1,∀i ∈ I (2)

where xj =

{
1 if subset j is selected

0 otherwise

and aij =

{
1 if item i is covered by subset j

0 otherwise

Simply put, each candidate j ∈ J is a binary column vector possessing a
weight cj , and the set to cover is initially a zero vector formed of as many
items/rows/cells as each candidate column vector (|I|).
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Chvatal’s Greedy Procedure. The classic greedy algorithm follows the ideas
of Chvatal’s algorithm [9], where the next candidate is selected based on its
effective cost. This is the score function used to determine which candidate to
add incrementally.

With Ij representing the set of still uncovered rows that column j covers and
Ji representing the set of candidates which cover row i, the candidate is chosen
at each step from the following formula:

argmin
j∈J

cj
|Ij |

(3)

Surprisal-Based Greedy Heuristic. The previous procedure is simple and
intuitive but can be improved to assign a more relevant score to candidates
based on the characteristics of all others. The Surprisal-Based Greedy Heuristic
is derived from Information Theory and can yield better results when applied to
the SCP than the Chvatal’s procedure [1]. Using the same notation, the candidate
is chosen according to:

argmin
j∈J

cj
|Ij |

∏
i∈Ij

|Ji| − 1

|Ji|
(4)

Thus, a candidate column is always chosen if it is the only one covering a
given row, since one of the terms in the product is zero. However, if alternative
candidates exist for all the rows covered by a candidate column, the score of this
column will be higher and tend toward the Chvatal’s greedy score.

1.2 Pulse Repetition Frequency Selection Problem

A major topic in radar engineering is target detection. Pulse Doppler radars can
determine the range and radial velocity of a target. They use multiples series
of pulses, called bursts, to achieve detection, each requiring the selection of its
Pulse Repetition Frequency (PRF, representing the number of pulses transmit-
ted by the radar each second).

The periodicity of pulse Doppler radars cause several problems:

– range blind zones: the radar cannot receive a pulse when another is emitted.
– range ambiguities: the radar use detection delays to determine the target

range, but has no way to identify the original pulse, and thus only determine
range within a modulo.

A burst with a given PRF is characterized by blind zones and ambiguities
on the range axis. Sending a waveform made of an ordered sequence of several
bursts associated with different PRFs can solve the aforementioned problems:

– blind zones of different bursts can compensate each other if they do not
overlap.
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– different bursts measure range with different modulos. According to the Chi-
nese Remainder Theorem, if the Pulse Repetition Intervals (PRIs, the inverse
of PRFs) have a high enough lowest common multiple, then detection of the
same target between both bursts will overlap on a unique range below the
maximum radar detection range, yielding the actual range of the target.
Ambiguity removal, also called decodability, thus requires the prohibition of
some PRFs combinations [12].

In this paper, we will consider that all bursts have a constant and identical
duration regardless of the PRF of each burst. This means that the number of
pulses in each burst is different and deduced from its PRF and that constant
duration.

Methods for resolving this problem from the literature have been tested with
evolutionary algorithms [12] for the selection of PRFs for bursts with constant
numbers of pulses, as well as with metaheuristics such as simulated annealing
[2] for the selection of PRFs for bursts with constant emission durations.

We use an M of N scheme: we select a set of N bursts and target detection
is achieve if M bursts can detect a given target. In this paper, all the tests have
been performed with the same scheme. We use a recursive approach to compute
the overall probability when adding a new burst [4]:

P (m,n) := pn · P (m− 1, n− 1) + (1− pn) · P (m,n− 1) (5)

with pn the detection probability of the n-th burst, P (m,n) the overall detection
probability of m among n bursts, with the following initial conditions:

P (0, 0) = 1 and ∀m,n ≥ 1, P (m, 0) = P (−1, n) = 0 (6)

2 Binarized Monte Carlo Search

In the field of operations research, tree search methods can explore the search
space systematically in a deterministic or stochastic manner. Different traversal
strategies can be considered, exhaustive or not, depending on the complexity
and the restrictions of the problem. The Limited Discrepancy Search [11] (LDS)
lends itself well to problems with a clear heuristic on the possible actions that
can occur. Indeed, it finds a solution deterministically by following a heuristic
while allowing a limited number of deviations from this heuristic to encourage
the exploration of alternative choices. Monte Carlo Tree Search uses random
sampling for part of its exploration and statistical analysis which allows it to
deepen the research in the most promising parts of the tree. Originally developed
for game-playing programs, especially those with vast search spaces like Go [10],
Monte Carlo Tree Search has since found applications in various fields such as
optimization.



16 Matthieu Ardon, Yann Briheche, and Tristan Cazenave

2.1 Nested Monte Carlo Search

Recursive approaches on Monte Carlo Search methods seems promising, espe-
cially for single-player problems [8], whose objectives can be similar to selection
problems. The addition of nested search procedures allows in some cases the
intensification of the search in parts of the decision tree (Nested Monte Carlo
Search), and in other cases prevent a premature convergence caused by a learning
that slows down the exploration too quickly (Nested Rollout Policy Adaptation).
A rollout, or playout, is a path that descends the tree with a randomized decision
at each depth until reaching a leaf [14].

Nested Monte Carlo Search. The Nested Monte Carlo Search (NMCS) is
a method that performs recursive improvements of playouts using nested levels
[5]. At level zero, the playouts are random. At higher levels, they are guided by
results obtained at lower levels.

Nested Rollout Policy Adaptation. The Nested Rollout Policy Adaptation
(NRPA) is a method that learns a policy which presents itself as a weight vector
influencing the probabilities of choosing each candidate [14]. NRPA has set new
world records in Morpion Solitaire and Crosswords Puzzles. The nested levels
are now associated to the best sequence found at this level. During the learning
(called the adaptation) of the policy, the weights of candidates present in the best
sequence are incremented, and the others are reduced. The learning rate α is an
hyperparameter controlling the update rate of these weights. The probability to
choose a child node child created from a parent node parent with the selection
of a given action action is:

pchild =
epolicy(childaction)∑

brother∈{children(parent)}
epolicy(brotheraction)

(7)

Calls to lower nested levels are limited to a given number of iterations. Nested
Rollout Policy Adaptation with Limited Repetitions [7] (NRPALR) ends the
playouts of a level when the best performance remains the same for a given
number of times. After a lower level call, the best sequence is returned to the
upper level and the upper level policy is updated then passed again to a lower
level call. Calls at level 0 use stochastic playouts.

Generalized Nested Rollout Policy Adaptation [6] (GNRPA) is another way
to integrate a heuristic or problem feature to guide the search in the tree. In this
method, computation of probabilities for choosing a node accounts for features
of the chosen node state. However this requires computing for each node its state
and features.

NRPA, GNRPA or GNRPALR perform a search that is partially random
and partially directed. They allow the integration of multiple heuristics during
initialization phase, and during search phase. In the search phase, they guide
exploration at a chosen speed (learning rate) with regular updates of the prob-
abilities of choosing children node (adaptation of the initial policy).
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2.2 Adapted Representations of Decision Trees

Decision trees can be well-suited representations for solving selection problems
with the following assumptions. A node represents a solution formed by the set
of candidates used in the sequence leading to that node. A branch represents the
choice of a specific candidate from the available set of candidates. Each candi-
date is an action mapping the state of the parent node to the state of the child
node, through the branch connecting both. The root of the tree is the neutral
state. Regardless of the chosen representation, the tree is pruned at the end of
every sequence when no candidate can comply with the problem constraints:
for the SCP the tree is pruned when the state of a node is entirely covered,
and for the PRF Selection Problem when either the desired number of bursts is
reached or when there is no remaining burst which can comply with decodability.

Classic exhaustive tree search methods and some less parameterizable Monte
Carlo Search methods do not always require the computation of the state of each
simulated node to traverse the tree and retain the best sequences. Sometimes,
only evaluating the leaves is sufficient. However, in the case of constrained prob-
lems, states must be computed each time. For example, to solve the Set Cover
Problem (SCP), it is necessary to check at each state whether the covering
condition has been satisfied, in order to stop the search, return the result corre-
sponding to the traversed sequence, and prune the tree.

Thus, reducing the number of explored states tends to reduce the overall
computational complexity. A tree with a high branching factor requires the com-
putation of many states at each step. Long sequences will also increase the num-
ber of computed states. While the length of the sequences cannot be reduced,
we can try to use more efficient representations for solving selection problems.
These representations should have a low branching factor and should not intro-
duce biases that favor certain candidates over others based solely on their initial
ordering or on an arbitrary position in the tree.

Binary Decision Trees. All branches leading to a parent node’s children cor-
respond to a specific action and its associated candidate. The parent node node
has two children: a first node (child(node, 0) in the Algorithms of this paper)
where the candidate is rejected (with the same state as the parent node), and a
second (child(node, 1)) where the candidate is added to the solution (the state
is thus the parent node state with the addition of the candidate).

Simulation Heuristics. The simulation of the next nodes takes into account
the construction of the current sequence, and greatly impact the quality of re-
search in binary trees.

Nodes can be simulated according to a heuristic which will determine an inter-
esting action to choose among all available actions. Random simulations/moves
can quickly produce solutions. Greedy simulations are likely to yield better so-
lutions.



18 Matthieu Ardon, Yann Briheche, and Tristan Cazenave

In a binary decision tree, a traversal ignoring each action would be possible
to favor the exploration of actions that are locally less interesting, but may be
globally interesting. Simulations can also be based on domain-specific rule-based
heuristics in order to intensify the quality of returned candidates. Some heuristics
can perform better than another depending on the problem.

In the simulation function, the heuristic assigns a score to each possible
action, in the same ways as the previously cited greedy score. The chosen action
is the one with the best score. If multiple actions achieve the same best score,
one can selected either through a predefined order or either randomly. As we
will see, the latter can introduce a stochastic aspect to a deterministic method.

The binary tree can be constructed with an initial ordering of the actions.
However, this will significantly decrease the effectiveness of the heuristic and
thus the quality of the search. Despite the need for greater computing resources,
we therefore favored a call to the heuristic each time a node is traversed for the
first time.

2.3 Dynamic Binarized Nested Monte Carlo Search (DBNMCS)

We adapted NMCS to perform the search partly on the binary decision tree, as
presented above, and partly through an iterative heuristic used to finalize the
solutions, see Algorithm 5.

The search occurs in two steps, each based on a heuristic which finds the best
action to consider in the rest of the current sequence, see Algorithm 4. In our
experiments, we used the same heuristic for both steps, but different heuristics
could be used for each step.

In the first step, we search through a nested level on a binary tree (starting
from the root), where each node, both simulated by the first heuristic, represents
a choice to add a candidate to the solution or not. For each child node of a given
parent node, the second step will perform a deterministic playout by completing
the solution using the second step heuristic. We select the node with the best
solution among the two children. The first step starts again from that node.

Recursively, the two steps are chained. Once we reach a zero nested level, we
perform two deterministic playouts. We store the node with the best solution
among the two as a starting point for an in-depth search (binary search then
playout), to try to find a better solution from that starting point.

Since each of the 2 branches is always traversed in the first step, and solutions
are obtained using in the second step using an deterministic heuristic, there is
no randomness in the algorithm, which is therefore totally deterministic.
Furthermore, after reaching the zero nested level, the playout are performed
until a leaf and then, the first step on a binary tree takes over from the node
corresponding to the best playout. The tree is therefore dynamic.

To summarize, the Dynamic Binarized NMCS involves a two-step process. In
the first step, a heuristic-based search is performed on the binary tree, exploring
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different sequences and forming partial solutions. In the second step, in the form
of local searches, playouts are conducted at the lowest nested levels of the tree to
finalize these partial solutions. The performances of the resulting solutions are
compared. The process repeats recursively until a leaf node is reached, potentially
refining the solution by considering variations of the initial choices. The entire
process is deterministic and dynamic. Ultimately, DBNMCS allows for a non-
exhaustive search of the decision tree guided by the most interesting choices to
focus on the parts of the tree that appear most promising. It does not need a lot
of hyperparameter tuning or precise information about the problem to initially
guide the search with complex heuristic.

2.4 Binarized Nested Rollout Policy Adaptation (BNRPA)

Another interesting possibility for exploring binary decision trees with heuristic-
based simulations are NRPA methods.

Unlike NMCS methods, playouts here always start at the root node, see
Algorithm 2. Each node in the binary tree representing whether a candidate is
added to the solution or not. We also use heuristic-based simulations to select
the available action with the best score, see Algorithm 4.

A policy vector is initialized before the start of the search, as is done in classic
NRPA. However, since the representation is now a binary tree where half of the
branches represent the choice to ignore a candidate, the encoding of the policy
needs to be modified. Thus, each candidate is now linked to a binary policy.
One component represents the choice to select it and the other represents the
choice not to select it. Before the start of the search, if the policy is initialized
uniformly, its values no longer depend on the number of candidates: for each
candidate, it is set to 1/2 for the component representing the choice to select it
and similarly for the one representing the choice not to select it.

Like in classic NRPA, we copy the policy from higher levels to lower lev-
els, and we adapt the policy by updating its values after each playout. This
improves the probabilities of the choices which might be proposed again in sub-
sequent playouts on the same nested level. In a binary tree, the best solution
found so far is made of choices of some actions and refusal of other actions.
Depending on the addition or refusal of each action action in the best found
solution among all playouts of a given nested level, we will increment its associ-
ated policy for selection (policy[(action, 1)]) or its associated policy for refusal
(policy[(action, 0)]) and decrement both policies, see Algorithm 3, to then keep
a sum of probabilities equal to 1 in the playouts. The learning rate α controls
the speed and intensity of the update of the policy. Note that at the end of any
nested level, the policy is not kept, and does not become the initial policy of the
higher level. Otherwise, it would prevent exploration due to adaptation occur-
ring in the same way to favor the same choices. Instead, only the best solution is
returned to the higher nested level, and the policy of the higher level is adapted
based on the best solution found in the lower level.



20 Matthieu Ardon, Yann Briheche, and Tristan Cazenave

The number of calls to the lower nested level per level is set in our first im-
plementation of Binarized NRPA (BNRPA). Another approach is to implement
a stop criteria on this level based on the number of times the exact best perfor-
mance is returned, hinting that further improvement is unlikely. This is done in
BNRPA with Limited Repetitions (BNRPALR), see Algorithm 1.

We can construct the tree statistically or dynamically. In the first case, the
root is always the same. The tree is built gradually as the playouts progress.
Playouts increasingly pass through existing branches and nodes as the probabil-
ities of traversing those branches increase. These branches become mandatory
paths at the top of the tree since all available paths have already been simulated.
In the second case, the root is reset with each new playout. The child nodes must
be simulated again at each depth until the playout stops at a leaf. Thereby, the
sequences are dynamic and can differ between playouts when multiple actions
obtain the same heuristic score, since we do not always choose the same action.
This dynamic construction can favor exploration and diversification. However,
reaching the repetition limit on the best performance can become harder, since
finding the same solution twice becomes unlikely and some problems will rarely
have the same performance for two different solutions.

Empirical evidences indicates that BNRPALR performs better than BNRPA
on static binary trees, and that BNRPALR performs better on static trees rather
than dynamic ones, for the same computation time. The variance observed on
different runs with BNRPALR is lower than the variance of BNRPA.

BNRPA with heuristic-based simulations uses a heuristic to choose the ac-
tions of the following nodes. Classic NRPA allows for the integration of another
heuristic or a prior in policy initialization. This is more difficult to do with BN-
RPA due to the binary policy. GNRPA also allows the integration of additional
information to guide the search by modifying the node choice probabilities based
on a weighted prior. With BGNRPA, it might be interesting to construct the
prior based on the average of a statistic across all remaining candidates to be
considered for the node that does not add a candidate. For the other node, it
would be the statistic specific to that candidate. Yet, with BGNRPA, actions
are not simulated in the same order in each sequence and biases then cannot be
precomputed. Nevertheless, this step is often the most time-consuming with GN-
RPA. However, this method still represents a promising approach for improving
BNRPA because it allows for the integration of additional information to guide
the search.

3 Experimental Results

We compare new Binarized Monte Carlo Search methods (DBNMCS and BN-
RPALR) with Limited Discrepancy Search (LDS) using the same simulations
heuristics and a discrepancy parameter set to 7 (SCP) or 8 (PRF Selection
Problem).
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3.1 Weighted Set Cover Problem

OR-library provides datasets of problem instances for benchmarking combina-
torial optimization, including the Weighted Set Cover Problem [3].

Each problem instance is characterized by the number of columns candidates
(or variables) |J |, the number of cells to cover (or constraints) |I|, and the den-
sity of the covered cells by the candidates. A weight has been assigned to each
candidate, and the objective is to minimize the sum of the weights of a subset
of chosen candidates.

We perform tests on OR-Library instance sets “4” to “NRH ”, with the
number of instances in each set indicated in Table 1 under the column |Set|.

We used DBNMCS and BNRPALR with both Chvatal’s Greedy Procedure
(CGP) and Suprisal-Based Greedy Heuristic (SBH) as simulation heuristics.
Each had 25 runs, under the same computation time limit. For BNRPALR, we
set the learning rate at 0.75, the nested level at 9 and the repetition limit at
5, with a uniform initial policy. For DBNMCS, we set the nested level at 4.
All the results are displayed and compared to the optimal or best known score
(BS) on Table 3. The stars indicates that at least one run has reached the best
performance (BS) with the corresponding method and simulation heuristic. The
GAP compares the average of the obtained performances from the 25 runs (AVG)
to the BS, such as:

GAP = 100× AV G−BS

BS
(8)

The smaller the average gap across a set of instances, the better the method.
Table 1 displays the average gap of each method over the sets of instances, and
the characteristics (number of variables and constraints, density) of each set.

Table 1. Comparison of Binarized Monte Carlo Search methods with CGP heuristic
on the sets of instances of the SCP from OR-library

Set |Set| |I| |J| Density
GAP averages

DBNMCS BNRPALR

4 10
200

1000
2

4.36 0.87
5 10 2000 5.43 1.25
6 5 1000 5 4.04 1.18
A 5

300 3000
2 6.62 2.14

B 5 5 3.19 1.19
C 5

400 4000
2 8.56 5.31

D 5 5 3.45 1.39
E 5 50 500 20 0 0

NRE 5
500 5000

10 1.88 1.05
NRF 5 20 2.97 2.05
NRG 5

1000 10000
2 9.91 22.5

NRH 5 5 7.17 9.99
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(2) Score BNRPALR with SBH : 522.24
(3) Score DBNMCS with CGP : 556.48
(4) Score DBNMCS with SBH : 542.0

Fig. 1. Evolution of the best performance found over time for instance scp43 from
OR-Library (BS = 516)

Figure 1 highlights the performances of DBNMCS and BNRPALR methods.
Each one was tested with the Chvatal’s Greedy Procedure and the Surprisal-
Based Heuristic as simulation heuristics, with a number of calls set at 3,000,000.
100 runs were performed for each configuration on the scp43 instance. It is a
moderately sized and low-density instance which proved to be quite discrimina-
tive in the various tests.

3.2 PRF Selection Problem

We performed tests on two different PRF Selection Problem instances, for which
we aim to maximize the detection probability at a given target range. We used
the same radar parameters (mean power, signal duration, carrier bandwidth...)
for both instances, and only changed the detection range, with the first prob-
lem (Instance 1 ) at low range (thus being easier to optimize) and the second
(Instance 2 ) at long range (thus being harder to optimize). These instances are
made up of 140 candidates and the search is stopped as soon as we have added
N candidates to our solution in accordance with the chosen M of N scheme.

We use both DBNMCS and BNRPALR with two different simulation heuris-
tics: one based on a simple greedy heuristic (GH) and the other on based an
initial random rating (RR). For BNRPALR, we set the learning rate at 0.75, the
nested level at 9 and the repetition limit at 5, with a uniform initial policy. For
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DBNMCS, we set the nested level at 8 (more important than the SCP since the
sequences are made up of only 6 candidates and therefore much shorter).

Greedy Resolution. The greedy resolution of the SCP relies on additional
information unrelated to candidate costs (which is the optimization criterion)
such as the number of additional rows that could be covered by a candidate. We
can still use a basic greedy process even when such information is not available:
at each step, we compute the solutions with each possible candidate (in other
words, each PRF compatible with the PRFs already chosen in the solution),
and select the one which maximize our optimization criterion, the detection
probability.

On Instance 1, the basic iterative greedy resolution of the problem gives poor
results. On Instance 2, they are even worse.

Randomized Rating. Here, the problem lacks additional information that
can be used to compute specific priorities for each candidate (such as CGP or
SBH). But there are other ways to determine the interest of some candidates over
others. Before the optimization, we can assign an interest score to each candidate
based on the average performance of randomly sampled solutions that contained
that candidate. Those interest scores will help favor certain candidates over
others when they achieved the same score for a simulation-based heuristic. It
is particularly suitable here because the candidates are not extremely numerous
(140). The initial random scoring RR of each candidate c ∈ C was computed over
3,000 random simulations, by normalizing the sum of the scores they obtained
during the runs in which they were selected in the waveform, by this number of
runs, as:

RRc norm =

∑
score(r)

r∈{run|c∈solution}

|{run|c∈solution}| −min
c∈C

RRc

max
c∈C

RRc −min
c∈C

RRc
(9)

This prior can be combined with the score of the greedy simulation heuristic
to weight it according to the initial interest of the candidates (GH & RR).

The results are compared in Table 2 with those of Simulated Annealing
(SA), obtained using scipy.optimize.dual annealing, and the Limited Discrep-
ancy Search (LDS).

Table 2. PRF Selection Problem results

SA
LDS BNRPALR DBNMCS

GH RR GH & RR GH RR GH & RR GH RR GH & RR

Instance 1
AVG 0.913 0.961 0.943 0.960 0.966 0.944 0.959 0.964 0.887 0.955
MAX 0.965 0.972 0.969 0.969 0.972 0.969 0.971 0.972 0.950 0.969

Instance 2
AVG 0.579 0.569 0.592 0.604 0.585 0.588 0.605 0.586 0.576 0.594
MAX 0.608 0.602 0.614 0.614 0.602 0.614 0.614 0.607 0.608 0.614



24 Matthieu Ardon, Yann Briheche, and Tristan Cazenave

4 Discussion

Weighted Set Cover Problem. BNRPALR seems to be more efficient than
DBNMCS on most instances for the same calculation time, see Table 1.

A possible explanation is the search getting lost in the resolution of instances
from the NRG and NRH sets which are very large and not very dense. Since each
candidate does not cover a lot of rows, the sequences are longer before reaching
the coverage condition. Escpecially for BNRPALR, whose entire search is carried
out on a binary tree with an initial non-negligible probability of ignoring actions.
In contrast, DBNMCS is better because playouts at nested level zero are shorter
and allow testing of many small variations when constructing solutions.

Moreover, regardless of the instance, BNRPALR takes more time to find a
better solution than a basic iterative greedy algorithm, whereas DBNMCS finds
quickly a close solution from its first traversed sequence, see Figure 1.

However, for all more moderate instances, BNRPALR give much better re-
sults, see Table 3. It often comes close to, and sometimes even achieves, the best-
known results for several instances. Generally the most efficient policy learning
and the most frequently optimal results are obtained on the densest instances
(sets 4, 5, 6, B, D, E, NRE, NRF).

Standard deviations in Table 3 are much larger with BNRPALR due to its
stochastic nature (each branch choice depends on a probability linked to the
simulated action policy). Non-zero standard deviations for DBNMCS, despite it
being deterministic, are due to random choice when several candidates have the
same score in the simulations. Additionally, these standard deviations are bigger
with CGP heuristic than with SBH, which has a more complex formula. Thus
two different solutions are less likely to have the same score.

Despite similar computational complexities, SBH takes a bit more time than
CGP. Under the same computation time limit, CGP is often more efficient at
it allows simulation of more nodes, and thus exploration of more solutions, see
Table 3. Within the same number of calls to the simulation heurisitc, BNRPALR-
SBH outperforms BNRPALR-CGP, see Figure 1.

For DBNMCS, SBH is significantly better than CGP. Indeed, the actions will
be chosen more scrupulously with SBH and therefore the numerous variations
around solution constructions lead to better performance. The evolution of the
DBNMCS performance with CGP is slow but regular, see Figure 1. The evolution
of the performance of the same method with SBH is sometimes very quickly
improved thanks to the more efficient simulation heuristic.

Pulse Repetition Frequency Selection Problem. On its own, greedy iter-
ative resolution performs poorly on the PRF Selection Problem, especially on
Instance 2. Binarized Monte Carlo Search methods can greatly improves the
results.

According to the SCP results, BNRPALR is more effective when an efficient
simulation heuristic is available. This is not the case for this problem, and this
explains the small difference between the performances of DBNMCS and BNR-
PALR, see Table 2. According to the conclusion of the original paper [5], NMCS
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can be used even without a good heuristic to guide the search, which is the case
with the PRF Selection Problem.

The search can also be improved with an initial randomized rating as the
simulation heuristic. This approach can be suitable even without an effective
greedy heuristic.

LDS also performs better because the size of the instances lends itself better
to this type of search. LDS beats Simulated Annealing but is not overall better
than Binarized Monte Carlo Search.

In summary, Dynamic Binarized NMCS requires little hyperparameter tuning
and is therefore suitable when the knowledge of the problem is limited or when
there is no existence of a good simulation heuristic that is not too computa-
tionally intensive. Binarized NRPA(LR) is suitable when a good result needs to
be achieved over a slightly longer period of time, or when additional informa-
tion from the data can be used to help improve this result continually. Possible
improvements could come from GNRPA [6] and should primarily improve its
robustness (variance).

DBNMCS and BNRPA(LR) significantly outperform the basic iterative greedy
algorithm since they use it as a simulation heuristic for choosing actions while
being more extensive on the exploration. DBNMCS will directly surpass this
result, while BNRPA(LR) may take some time before exceeding it.

A good simulation heuristic applied to these methods significantly improves
the final result. However, there is a tradeoff to find between the efficiency of the
heuristic and its computational cost. Here, for an equivalent computation time,
the simulation with the least effective heuristic (and consequently the fastest)
will be preferred with BNRPA(LR).

The characteristics of the instances can also influence the choice of the res-
olution method. On instances of reasonable sizes (<∼ 5000 candidates) and
balanced (consistent density for the SCP), BNRPALR is very effective. On more
aberrant instances, DBNMCS is more appropriate. Furthermore, LDS is worth
considering on small instances.

A deterministic method with a more discriminative simulation heuristic will
improve the robustness (variance) of the optimization.

5 Conclusion

In this paper, we have presented adaptations of two Monte Carlo Search meth-
ods, Dynamic Binarized Nested Monte Carlo Search (DBNMCS) and Binarized
Nested Rollout Policy Adaptation (BNRPA) including its variants BNRPALR
and BGNRPA. With the use of binary decision trees and heuristic-based sim-
ulations, these adaptations are suitable for solving selection problems and po-
tentially other optimization problems . We have shown that it is the case for
the Weighted Set Cover Problem, where the most relevant method managed to
find the best score on certain suitable instances, and for the Pulse Repetition
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Frequency Selection Problem, where we beat the results of other tested meth-
ods. In addition , we have also highlighted and explained the interest of each
method depending on the characteristics and knowledge of the problem and in-
stances to be solved and the quality of the heuristic on which the simulation is
based. Further work may focus on accelerating the playouts of these methods
and improving DBNMCS’s performance and BNRPA’s variance.
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Algorithm 1: BNRPALR(level, policy)

if level = 0 then
return BNRPALR Playout(policy)

else
bestScore← −∞
repetitions← 0
while repetitions ≤ R do

(score, sequenceActions)← BNRPALR(level − 1, policy)
if score = bestScore then
repetitions ← repetitions + 1

else if score > bestScore then
repetitions← 0
bestScore← score
bestSequenceActions← sequenceActions

end if
policy ← BNRPALR Adapt(policy, bestSequenceActions)

end while
return (bestScore, bestSequenceActions)

end if

Algorithm 2: BNRPALR Playout(policy)

node← root
sequenceActions← {}
while true do

if state(node) is a complete solution then
return (score(state(node)), sequenceActions)

else
if node has not yet been traversed then
action← Simulate(node)
state(child(node, 0))← state(node)
state(child(node, 1))← state(node) ∪ action

else
action← action(children(node))

end if
end if
z ← exp(policy[(action, 0)]) + exp(policy[(action, 1)])
child← choose child i with probability proportional to

exp(policy[(action, i)]) / z
sequenceActions← sequenceActions+ [(action, i)]
node← child

end while
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Algorithm 3: BNRPALR Adapt(policy, sequenceActions)

policy´ ← policy
for num← 1 to length(sequenceActions) do

(action, i)← sequenceActions[num]
policy´ [(action, i)] += α
z ← exp(policy[(action, 0)]) + exp(policy[(action, 1)])
policy´ [(action, 0)] -= α Ö exp(policy[(action, 0)]) / z
policy´ [(action, 1)] -= α Ö exp(policy[(action, 1)]) / z

end for
return policy´

Algorithm 4: Simulate(node)

greedyScores← {}
for each available action do

greedyScores← greedyScores + [greedy score of action on state(node)
according to the simulation heuristic]

return action corresponding to argmax(greedyScores)

Algorithm 5: DBNMCS(level, node)

if level = 0 then
while state(node) is not a complete solution do

action← Simulate(node)
state(child(node))← state(node) ∪ action
node← child(node)

end while
return score(state(node))

else
bestScore← −∞
while node is not a leaf do

action← Simulate(node)
state(child(node, 0))← state(node)
state(child(node, 1))← state(node) ∪ action
for children i of node do
temp← child(node, i)
score← DBNMCS(level − 1, temp)
if score > bestScore then

bestScore← score
bestChild← temp

end if
end for
node← bestChild

end while
return bestScore

end if
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Table 3. Set Cover Problem results

Instance BS
LDS DBNMCS BNRPALR

CGP SBH CGP SBH CGP SBH
AVG GAP AVG GAP AVG STD GAP AVG STD GAP AVG STD GAP AVG STD GAP

41 429 465.9 8.6 465 8.4 443 0.4 3.3 442 0 3 433 0.9 0.9 437.2 1.9 1.9
42 512 567.1 10.8 560 9.4 543.9 0.8 6.2 534.2 0.1 4.3 514* 0.8 0.4 515.2* 1.1 0.6
43 516 572.4 10.9 560 8.5 550.4 1.2 6.7 542 0 5 522.6 1.2 1.3 523 1.3 1.4
44 494 533.2 7.9 534 8.1 522.3 0.5 5.7 521 0 5.5 498.5 0.3 0.9 499.6 0.4 1.1
45 512 570.1 11.4 568 10.9 534.8 0.6 4.5 532 0 3.9 515 0.2 0.6 516.3 0.8 0.8
46 560 596.1 6.4 599 7 575 0.4 2.7 574 0 2.5 564.4 0.4 0.8 565.1 0.5 0.9
47 430 469.4 9.2 476 10.7 445.2 0.5 3.5 441 0.5 2.6 433.5 0.1 0.8 433.4 0.1 0.8
48 492 525.9 6.9 524 6.5 505.8 0.5 2.8 502 0 2 499.2 0.5 1.5 499.2 0.6 1.5
49 641 715.9 11.7 700 9.2 674.7 0.5 5.3 672 0 4.8 647.1 0.7 0.9 649.1 1.4 1.3
410 514 544.3 5.9 543 5.6 529.6 0.4 3 529 0 2.9 517 0.2 0.6 517.2 0.3 0.6
51 253 283.8 12.2 282 11.5 269.6 0.9 6.6 265 0.1 4.8 259 0.7 2.4 259.7 1 2.7
52 302 337.5 11.8 335 10.9 322.7 0.7 6.8 315 0 4.3 308.4 0.9 2.1 310.2 1.3 2.7
53 226 243.9 7.9 241 6.6 236 0.4 4.4 233 0 3.1 228.8 0.3 1.2 229.4 0.7 1.5
54 242 257.2 6.3 259 7 253 0.4 4.6 254.2 2.1 5 244.5 0.8 1 247.5 1.6 2.3
55 211 234.2 11 229.3 8.7 222.4 0.9 5.4 220 0 4.3 213.4 0.6 1.1 215.2 1.4 2
56 213 242.1 13.7 243 14.1 228.4 0.9 7.2 221.9 0.1 4.2 214.5 0.4 0.7 215 0.6 0.9
57 293 314.1 7.2 319 8.9 303.8 0.7 3.7 304 0 3.8 296.1 0.5 1.1 297.1 0.6 1.4
58 288 315.3 9.5 318 10.4 303.4 0.5 5.4 300 0 4.2 290.7 0.3 0.9 291.8 0.8 1.3
59 279 297.4 6.6 295 5.7 293 0.6 5 287 0 2.9 280.4* 0.6 0.5 281.8* 0.8 1
510 265 284.7 7.4 284 7.2 278.7 0.3 5.2 277 0 4.5 268.7 0.5 1.4 268.6 0.5 1.4
61 138 148.9 7.9 148 7.2 142.4 0.4 3.2 149.6 0.2 8.4 139* 0.8 0.7 139.3* 1 1
62 146 163.3 11.8 163 11.6 150.5 0.6 3.1 154 0 5.5 147.1* 0.6 0.7 147* 0.6 0.7
63 145 157.9 8.9 158 9 152 0 4.8 153 0 5.5 149.8 0.9 3.3 149.9 1 3.4
64 131 140.5 7.3 140 6.9 134.2 0.7 2.4 136 0 3.8 132 0 0.8 132.2 0.3 0.9
65 161 183.3 13.8 182 13 171.8 0.7 6.7 175 0 8.7 161.6* 0.3 0.4 161.2* 0.2 0.1
A1 253 281.6 11.3 280 10.7 267.2 0.6 5.6 261.5 0.4 3.4 258 0.5 2 260.3 0.8 2.9
A2 252 282.9 12.2 279 10.7 265.4 0.5 5.3 264 0 4.8 257.1 0.9 2 260.1 1.1 3.2
A3 232 260 12.1 256 10.3 249.2 1.9 7.4 244 0 5.2 238.3* 1.4 2.7 240.6 1.3 3.7
A4 234 269.9 15.4 266 13.7 256.1 1 9.5 253 0 8.1 239.3 0.7 2.3 242.9 1.2 3.8
A5 236 256.7 8.8 254.4 7.8 248.5 0.4 5.3 244 0 3.4 240.1 0.5 1.7 242.1 0.8 2.6
B1 69 73.9 7.1 75 8.7 71.9 0.4 4.2 73 0 5.8 70.2 0.6 1.8 70.3 0.5 1.9
B2 76 83 9.2 82 7.9 77.8 0.6 2.4 78 0 2.6 76.2* 0.3 0.3 76.8* 0.8 1.1
B3 80 85.4 6.8 86 7.5 82.4 0.3 3.1 86 0 7.5 81.7 0.4 2.2 81.9 0.4 2.4
B4 79 86.5 9.5 87 10.1 82 0.5 3.8 85 0 7.6 79.5* 0.3 0.6 79.6* 0.4 0.7
B5 72 78 8.3 78 8.3 73.8 0.2 2.4 74 0 2.8 72.8* 0.8 1.1 73* 0.7 1.4
C1 227 256.4 13 252 11 244.6 0.5 7.8 243 0 7 239.5 0.9 5.5 241.8 0.9 6.5
C2 219 251.5 14.8 246 12.3 238.5 0.7 8.9 234.1 0.7 6.9 231.4 1.2 5.6 234.2 2 7
C3 243 267.8 10.2 266 9.5 263.2 1.3 8.3 265.6 2 9.3 257.1 1.5 5.8 261.4 2.1 7.6
C4 219 256.3 17 252 15.1 241.7 1.4 10.4 241 0 10 229.3 1.5 4.7 233.1 1.9 6.4
C5 215 234.9 9.2 235 9.3 231 0.8 7.4 233 0 8.4 225.6 1.4 4.9 230.8 1.5 7.3
D1 60 68.1 13.4 68 13.3 63.3 0.5 5.5 64 0 6.7 61.7 0.5 2.8 62.4 0.6 3.9
D2 66 70.5 6.8 70 6.1 67.6 0.3 2.4 68 0 3 66.3* 0.3 0.5 66.7* 0.4 1
D3 72 79.1 9.9 81 12.5 74.9 0.3 4 75 0 4.2 73.3* 0.5 1.8 73.5* 0.7 2.1
D4 62 66.1 6.5 65.5 5.7 62.8* 0.5 1.3 63.4 0.3 2.2 62.7* 0.5 1.1 63.4* 0.7 2.3
D5 61 66.9 9.7 69 13.1 63.5 0.4 4.1 64 0 4.9 61.5* 0.4 0.8 62.1* 0.7 1.8

E12345 5 5* 0 5* 0 5* 0 0 5* 0 0 5* 0 0 5* 0 0
NRE1 29 30.3 4.4 30 3.4 29.1* 0.3 0.3 30 0 3.4 29.1* 0.3 0.3 29.2* 0.3 0.6
NRE2 30 32.8 9.3 33 10 31.1* 0.5 3.6 32 0 6.7 30.5* 0.5 1.6 31.3* 0.5 4.3
NRE3 27 28.3 4.7 28 3.7 27.9* 0.3 3.3 28 0 3.7 27.6* 0.5 2.1 27.2* 0.4 0.7
NRE4 28 30.8 10 31 10.7 28.6* 0.4 2.3 29 0 3.6 28.4* 0.5 1.3 28.6* 0.5 2.1
NRE5 28 31 10.7 31 10.7 28* 0 0 28* 0 0 28* 0 0 28* 0.2 0.1
NRF1 14 14* 0 14* 0 14* 0 0 14* 0 0 14* 0 0 14* 0 0
NRF2 15 15* 0 15* 0 15* 0 0 15* 0 0 15* 0 0 15* 0 0
NRF3 14 15 7.1 15 7.1 15 0 7.1 15 0 7.1 14.9* 0.4 6.3 14.8* 0.6 5.4
NRF4 14 14* 0 14* 0 14* 0 0 14* 0 0 14* 0 0 14* 0 0
NRF5 13 13.5* 3.7 14 7.7 14 0 7.7 14 0 7.7 13.5* 0.7 4 13.8* 0.5 6.2
NRG1 176 202.1 14.8 197 11.9 194 0.6 10.2 193 0 9.7 217.4 1.9 23.5 232.9 2.3 32.3
NRG2 154 176.3 14.4 171 11 169.5 0.6 10.1 169 0 9.7 188.2 2.6 22.2 203.4 3.2 32.1
NRG3 166 189.1 13.9 187 12.7 182.7 0.6 10 179.2 0.2 8 203.7 3.1 22.7 220.7 2.8 33
NRG4 168 188.6 12.3 192 14.3 184 0.5 9.5 184.4 0.2 9.8 204.9 2.3 22 221.8 2.7 32
NRG5 168 189.9 13 194 15.5 184.3 0.5 9.7 182 0 8.3 205.2 2.7 22.2 218.8 2.4 30.3
NRH1 63 72.7 15.4 71 12.7 68.1 0.5 8.1 68 0 7.9 69.6 1 10.5 70.9 1 12.6
NRH2 63 71.9 14.1 71 12.7 68.2 0.5 8.3 69 0 9.5 69.9 0.6 10.9 70.9 1 12.6
NRH3 59 66.3 12.4 67 13.6 63.4 0.4 7.5 64 0 8.5 65.6 0.8 11.1 66.8 1 13.2
NRH4 58 64.6 11.3 65 12.1 61.8 0.5 6.6 63 0 8.6 63.6 0.8 9.7 65.2 1.1 12.4
NRH5 55 61.6 12 61 10.9 57.9 0.4 5.2 56 0 1.8 59.2 1 7.6 61.5 1.4 11.8



Effective Kinodynamic Planning and
Exploration through Quality Diversity and

Trajectory Optimization⋆

Konstantinos A. Asimakopoulos1,2, Aristeidis A. Androutsopoulos3,
Michael N. Vrahatis2, and Konstantinos I. Chatzilygeroudis1,2

1 Laboratory of Automation & Robotics (LAR), Department of Electrical &
Computer Engineering, University of Patras, GR-26504 Patras, Greece,

Emails: konassimako@gmail.com, costashatz@upatras.gr
2 Computational Intelligence Laboratory (CILab), Department of Mathematics,

University of Patras, GR-26110 Patras, Greece, Email: vrahatis@math.upatras.gr
3 Computer Engineering and Informatics Department (CEID), University of Patras,

GR-26504 Patras, Greece, Email: a.a.androutsopoulos@gmail.com

Abstract. Efficient and rapid kinodynamic planning is crucial for nu-
merous real-world robotics applications. Various methods have been pro-
posed to address this challenge, primarily falling into two categories: (a)
randomized planners and (b) trajectory optimization utilizing simpli-
fied models and numerical optimization. Randomized planners such as
RRT and PRM excel in exploring the state space, while trajectory opti-
mization methods, like direct collocation, are adept at discovering opti-
mal trajectories within well-defined spaces. We aim to achieve effective
and efficient kinodynamic planning and exploration by integrating evolu-
tionary algorithms (Quality-Diversity) with trajectory optimization. Our
preliminary experiments showcase that using the proposed methodology
we get the best from both worlds on two simulated experiments.

1 Introduction and Related Work

Effective exploration of the state space is crucial in real-world robotic appli-
cations. However in hard exploration problems a large amount of iterations is
usually required to reach areas of high-reward. This necessitates the use of an
efficient exploration strategy. Randomized planners like Rapidly exploring Ran-
dom Trees (RRT) [5] and Probabilistic Roadmaps (PRM) [4] navigate large state
spaces efficiently, with RRT* even attempting to find the optimal path [3]. Tra-
jectory optimization excels in well-defined spaces but has limitations for exten-
sive state-space coverage. Go-Explore [2] is a Quality-Diversity (QD) optimiza-
tion algorithm [1,7] and is able to provide numerous diverse high-performing so-
lutions despite having a simple random exploration strategy. We propose a more
structured approach by substituting this strategy with trajectory optimization

⋆ This work was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to support Post-
Doctoral Researchers” (Project Acronym: NOSALRO, Project Number: 7541).
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for a synergistic solution. Our improvements, outlined in Section 2, enhance the
Go-Explore framework with the robustness of trajectory optimization, while also
improving its exploration abilities in difficult scenarios.

2 Proposed Approach

Go-Explore framework: Go-Explore [2] addresses detachment and derail-
ment challenges by (1) maintaining a global archive of all uniquely interesting
states and (2) dividing exploration into deterministic returns to states followed
by stochastic exploration. To enhance robustness, the algorithm operates in two
phases: (a) task-solving exploration and (b) solution robustification, involving
processes like imitation learning on the discovered trajectories4. The initial phase
of Go-Explore involves building an archive of interesting states, each associ-
ated with a history of actions and a score indicating exploration interest. This
state/history/score group is called a cell. The archive, starting with the initial
state, is denoted as A. At each iteration, the algorithm follows the steps in Alg. 1.
During cell insertion, scores are updated and a binary similarity metric evaluates
the state in comparison to existing states. If distinct or higher performing, it is
added and it replaces the similar cells in the archive.

Algorithm 1 Go-Explore Framework

1: procedure Go-Explore(s0, nbatch, niter)
2: A ← new cell(s0, ∅) ▷ Initialize archive, A, with initial state s0

3: for n = 1 to niter do
4: cells ← SelectCells(A, nbatch) ▷ Select nbatch exploration cells
5: new cells ← Explore(cells) ▷ Run stochastic exploration
6: AddToArchive(A, new cells) ▷ Add explored cells to the archive
7: UpdateScores(A) ▷ Update the scores of cells
8: end for
9: return A ▷ The outcome of the algorithm is the archive
10: end procedure

Go-Explore with trajectory optimization: In the original implementation
of Go-Explore [2] (Vanilla Go-Explore) the exploration strategy used is essen-
tially a sequence of random actions. We propose to leverage trajectory opti-
mization instead of random exploration. At the start of every exploration phase,
batch size cells are chosen from the archive to explore from. For every chosen
cell we sample a random point within a small distance. We then use trajectory
optimization to find the path between the cells and their respective random
points. In this manner, we leverage the robust solutions provided by optimiza-
tion on a smaller scale, all the while retaining the exploration benefits inherent
in Go-Explore.

Bidirectional Go-Explore: To achieve a faster and more effective exploration,
we propose a bidirectional Go-Explore algorithm with two agents—forward and
backward—initialized at different state space points. Each agent runs a slightly

4 We only care about the first phase in this work.
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different version of our trajectory optimization enhanced Go-Explore, featur-
ing separate archives. The forward version reflects our proposed model, while
the backward version addresses the inverse optimization problem. During explo-
ration for the backward version, the randomly sampled point is considered the
starting point, aiming to return to the selected cell. The bidirectional exploration
involves choosing a batch of cells, returning to their states, sampling a nearby
random state, using trajectory optimization for the forward and backward ver-
sion and updating their respective archives with the trajectory optimization
results. We use this “reverse” design for the backwards version to facilitate ex-
change of useful discovered information between the two agents.

Trajectory merging: In order to be able to merge information from the for-
ward and backward archives, we use a merging mechanism. After each explo-
ration phase, we check if cells from the two archives are close based on a merging
distance. If so, trajectory optimization concatenates their paths into one merged
trajectory that is then added to the forward archive. The step-by-step merg-
ing process involves checking proximity between backward and forward archive
cells, using trajectory optimization for optimal paths, concatenating histories,
and adding the merged cell to the archive.

3 Experimental Results
In order to showcase the effectiveness of our proposed method, we designed and
performed a number of simulated experiments. We tested our proposed method
in two distinct environments and compared its performance to that of the Vanilla
Go-Explore and RRT algorithms in space coverage and average trajectory length;
we compare to RRT only in the Maze scenario.

Maze environment: For this experiment we use the 2D car-like kinematic
vehicle model from [6] which does not allow skidding. We use this model to
explore a 2D maze environment (see Fig. 1).
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Fig. 1: 2D Maze Experiments. Median and 5th/95th percentiles over 5 replicates.

Planar Quadrotor: We use the Planar Quadrotor environment (Fig. 2) be-
cause a) it is higher dimensional, and b) the control commands matter (a.k.a.,
the quadrotor will crash if given bad commands).
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Planar Quadrotor Experiment
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Fig. 2: Planar Quadrotor. Median and 5th/95th percentiles over 5 replicates.

Results: We run 5 replicates of each scenario for each algorithm and report the
space coverage and average trajectory length. Trajectory length is important (es-
pecially in the quadrotor) as it showcases that the algorithm has found effective
control policies. The results showcase that our proposed method on simpler envi-
ronments like the 2D car maze is on par with state of the art methods (Fig. 1) in
both state space coverage and control efficacy, while clearly outperforming other
methods in the more complicated and delicate quadrotor environment (Fig. 2).

4 Concluding Remarks
We have introduced a variant of the Go-Explore where we utilize trajectory op-
timization in a strategic manner in order to boost its performance while keeping
its exploration capabilities. We also provided preliminary results on a bidirec-
tional Go-Explore scheme. Overall, our methods are able to efficiently explore
the state space, while also discovering effective controllers.
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Quadratic programming is a workhorse of modern nonlinear optimization, con-
trol, and data science. Although regularized methods offer convergence guarantees un-
der minimal assumptions on the problem settings [4], they can exhibit the slow tail-
convergence typical of first-order schemes [2]. Thus, they tend to require many itera-
tions to achieve high-accuracy solutions. Moreover, the solver performance is sensitive
to the hyperparameter tuning. To address these issues, we explore how data-driven ap-
proaches can accelerate the solution process. Indeed, learning techniques may serve as
a remedy for slow convergence by proposing ideal hyperparameters sequences (cf. [5]).
We will show that Reinforcement Learning (RL) [10] can make a significant contribu-
tion to speeding up the optimization process.

We present in this preliminary research a modular implementation of a proximal
augmented Lagrangian interior point method and investigate the influence of penalty
parameters’ dynamics. Exploiting proximal regularization schemes to guarantee ro-
bustness and numerical stability, we focus on two proximally stabilized interior point
methods [3,7] (and recently implemented in [9]) whose dynamics depend on the prob-
lem settings and some (sequences of) hyperparameters. Using an object-oriented imple-
mentation the solver is constituted of multiple modules offering each different features.
Each ready-to-use optimization method, linesearch, regularisation techniques, and ter-
mination criteria can be easily combined to build a plethora of different optimization ar-
chitectures. We investigate and explore how to accelerate such robust yet slowed-down
algorithms using data-driven and learning-based techniques. In particular, we leverage
the minimal requirements posed by proximal methods to dynamically construct the se-
quences of hyperparameters, possibly adapting the solver’s behaviour to the problem
instance at hand. A common approach is to decrease proximal and penalty parameters,
monitoring some early termination criteria, in order to tackle the problem faster. Pre-
liminary evidence suggests that for some decrease strategies the solver exhibits a much
better convergence speed, although staying very problem-dependent. Our framework’s
preliminary results are based on convex random problems and the Maros-Mészáros
benchmark test-set [6].

This research is funded by dtec.bw – Digitalization and Technology Research Center of the
Bundeswehr. dtec.bw is funded by the European Union – NextGenerationEU.
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Learning-based acceleration methods (e.g. amortized optimization [1]) were already
successfully applied in multiple academic problems for parameter tuning and warm-
start strategies [5,8]. However, it is not yet clear how beneficial such strategies can be
and at what training-cost. In [1] multiple application cases of amortized optimization
are presented and attempt to predict the solutions to problems in these settings, exploit-
ing the shared structure between similar problem instances. Using RL a policy is learned
that outputs the next hyperparameters depending on the current training progress. Dur-
ing the training, the policy interacts with steps of the solution approach, which takes
over the role of the system to be controlled. Furthermore, we apply a model-based ap-
proach in order to take advantage of the knowledge about the model, instead of treating
it as a black-box. The final outcome of the training is a fast automation of the parameter
decision for the proximal interior point method, which outperforms the usual heuristic
choice.
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Abstract. In this paper we look at the experimental design for multi-
objective problems, where the objectives can be evaluated independently
(decoupled) and thus it may make sense to evaluate different solutions
for each objective if the objectives have different evaluation costs and/or
different landscape characteristics. We propose to iteratively add design
points in a way that minimises the total integrated mean squared pre-
diction error assuming a Gaussian process response surface model, and
show that allowing decoupled evaluations can lead to significantly bet-
ter Pareto front estimations than a coupled design of experiments if the
evaluation costs of the objectives are different. We also find that our ap-
proach of minimising mean squared prediction error yields significantly
better results than standard Latin Hypercube designs even if the evalu-
ation costs and landscape characteristics of the objectives are the same.

Keywords: Expensive optimisation · Varying costs · Multi-objective
experimental design.

1 Introduction

Fundamental to the performance of surrogate-based optimisation frameworks is
the need to construct an initial model based on a carefully selected set of initial
designs and any prior system knowledge. This is both in the case of Bayesian op-
timisation (BO), which uses and iteratively updates model(s) mapping decision
vectors to predicted performance criteria values, and for evolutionary compu-
tation approaches which involve surrogates. The selection and construction of
initial designs, which are often treated separately to the decision vectors queried
during the subsequent optimisation process, are usually referred to as the design
of experiments (or DoE for short). This is because these decision vectors are se-
lected to—in some fashion—be maximally informative on the global underlying
process, rather than being biased towards particular regions.
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Without any prior information regarding the properties of the objective func-
tion(s) such DoE for model fitting are commonly based around space filling se-
quences such as Latin hypercube sampling (LHS) [15] or Sobol sequences [16],
as purely random sampling tends to naturally result in clusters, which do not
serve model fitting well, particularly when the budget for sampling is tight.

Where there are multiple criteria being modelled, this leads to an interesting
and under-explored question: should one evaluate all initial designs fully, or in-
stead selectively evaluate a subset of objectives per design, allowing a greater
number of locations to be partially evaluated when building the model(s)? A
few works have looked at decoupling objective evaluations during the search
process—particularly where there are different costs associated with each ob-
jective, but this can also be advantageous where there is a difference in the
complexity of the functions being modelled (e.g. one being smooth and slowly
changing, the other being rugged and fast changing). As such, this appears to
be a promising direction for further investigation and research, as even small
improvements in such areas can effectively lead to large savings for expensive op-
timisation problems. A possible drawback, on the other hand, is that the Pareto
dominance cannot be determined for sure on decoupled designs (only with some
confidence depending on the accuracy of the surrogate model prediction).

The remainder of the paper is set out as follows. In Section 2 we introduce
existing work and methods relating to decoupled and cost-aware multi-objective
optimisation, and highlight how our work relates to these. Section 3 presents re-
sults of the proposed approach with different problem configurations, and high-
lights the circumstances where there appears to be a significant benefit to de-
coupling the DoE locations. In Section 4 we discuss the results, and highlight
future research directions.

2 Related Work

In single objective optimisation, there are various papers taking into account the
cost of evaluating a solution where this cost depends on the solution evaluated.
The de facto standard is to divide the acquisition function value by the corre-
sponding cost value (e.g., [17]). [13] demonstrates that this is not always a good
choice, and proposes an alternative mechanism. In particular, they propose an
initial space-filling design that takes cost into account, by iteratively and greed-
ily adding points that are inexpensive to evaluate but have a large distance from
points already chosen. During optimisation, their algorithm reduces the empha-
sis on cost, starting with the standard division by cost, then slowly changing into
a standard acquisition function optimisation without considering cost. In [12],
the authors propose a non-myopic approach to BO with cost considerations.

A small number of existing works have considered decoupled and/or cost-
aware multi-objective optimisation—some of which have considered these factors
during the initial DoE phase. Below we discuss the most relevant approaches. A
wider survey on the topic of objectives with different costs can be found in [2].
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In [1], a user can define a cost ranking of the decision variables, e.g. in the case
that decision variables represent the amount of an ingredient, and the ingredients
have different costs. The acquisition function then favours solutions with small
values in particular for the expensive variables, and this preference is reduced
over the course of the run, eventually removing cost considerations.

Hernández-Lobato and colleagues proposed the Predictive Entropy Search
for Multi-Objective Bayesian Optimization (PESMO) method [10]. PESMO uses
predictive entropy search as the acquisition function. This function represents
each objective using an additive component, which enables a decoupled evalua-
tion approach to be adopted. The approach was subsequently extended to also
consider constraints (again where decoupling is possible) [9].

Suzuki et al. developed the Pareto-frontier entropy search (PFES) approach
[18]. PFES is also an entropy approach but considers the entropy in objective-
space rather than decision-space, which is computationally simpler. This method
also includes cost in evaluating the objectives by including cost in the denomi-
nator of the acquisition function. Like PESMO, the approach is easily extended
to consider decoupled evaluations.

The Joint Entropy Search (JES) proposed in [19] is also able to take into
account different costs and decoupled evaluations, although the authors did not
actually experiment with it because they expected little benefit from decoupled
evaluations.

Iqbal and colleagues proposed the Flexible Multi-Objective Bayesian Opti-
mization (FlexiBo) algorithm [11]. The approach uses a decoupled evaluation
in the Bayesian optimisation run but a coupled initial DoE procedure. It addi-
tionally learns the solution-dependent cost function for each objective. FlexiBo
estimates for each individual optimistic and pessimistic objective values, which
are identical if the objective has been evaluated. From that, it computes an op-
timistic and pessimistic Pareto front as the boundaries of the “Pareto region”,
and uses an acquisition function that estimates the expected reduction in the
volume of this Pareto region, divided by the respective cost.

Buckingham et al. extended the multi-attribute Knowledge Gradient [3] to
the case where objectives can be evaluated independently [6]. The authors demon-
strate the benefit of independent evaluation not only when the computational
costs for objectives differ, but also when the lengthscales of the modelled land-
scapes (which determine the smoothness of the landscape) differ. Independently,
[8] propose to adapt a hypervolume-based Knowledge Gradient approach to al-
low for decoupled evaluation of the objectives.

A slightly different problem is considered in [14,5], where one objective is
much cheaper (essentially free) to evaluate than the other. They directly in-
corporate evaluation of the cheap objectives into a pair of hypervolume-based
acquisition functions for BO. Consequently, the cheap objectives are evaluated
many times while the acquisition function is optimised.

A summary of the different approaches is shown in Table 1.
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Table 1: Existing methods for decoupled cost-aware multi-objective optimisation
Design of experiments Optimisation

Approach Decoupled? Cost-aware? Decoupled? Cost-aware? Acquisition function

PESMO [10] ✓ ✗ ✓ ✗ predictive entropy
search

PFES [18] ✗ ✗ ✓ ✓ cost-weighted
Pareto frontier
entropy

FlexiBO [11] ✗ ✗ ✓ ✓ cost-weighted objec-
tive space entropy

C-MOKG [6] ✗ ✗ ✓ ✓ cost-weighted multi-
objective knowledge
gradient

CA-MOBO [1] ✗ ✓ ✗ ✓ cost-weighted
Tchebycheff
scalarised UCB

HV-KG [8] ✗ ✗ ✓ ✓ cost-weighted hy-
pervolume knowlege
gradient

JES [19] ✗ ✗ ✓ ✓ joint entropy search
This paper ✓ ✓ ✗ ✗ N/A

3 Empirical work

In this section we consider a range of different properties/configurations of a
problem which may influence the effectiveness of a decoupled DoE, and inves-
tigate these empirically. LHS designs are generated using the R package lhs [7]
with the maximin option.

3.1 Initial DoE when evaluations are decoupled

We begin with an illustration of a greatly simplified case, where the costs of
querying each of two objectives are the same. The two objective functions are
generated by Gaussian process models (GPs)—so we are assured that emulation
by a trained GP will fit the modelling assumptions, and we also directly utilise
the hyperparameters of the objective function GPs, removing the effect of having
to infer these, so there is no model mismatch (i.e. our model is perfectly capable
of modelling the generating process).

Our goal is to study the effect of coupled versus decoupled designs of ex-
periments (DoE) on the uncertainty on the Pareto front in this very controlled
problem configuration, before moving towards a more realistic scenario. We gen-
erate samples from a GP model for each objective and use it as the ground truth
for fitting the GP approximation models. An example of the generating models
and respective mapping to the objective space is given in Figure 1.

In Figure 2 an example is shown where the DoE for the first objective is the
same while the second objective is either coupled (left panel) or decoupled (right
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Fig. 1: Top: two realisations of Gaussian process priors, with Matérn 5/2 co-
variance kernel, with lengthscale hyperparameters (0.3, 0.4) (resp. (0.4, 0.2)) for
f1 (resp. f2), and unit variance. Bottom: corresponding image in the objective
space (grid sampled), with the estimated Pareto front highlighted in red.

panel). The decoupled DoE of the second objective is obtained by augmenting the
first objective DoE while maintaining the LHS structure. Attainment functions
are obtained by taking a joint sample on a 51 × 51 grid from the GP posterior
for each objective conditioned on the observations, then determining the non-
dominated observations. The q-Attainment front is then representing the area
that is dominated by a fraction q of all the estimated Pareto fronts generated.
One visible effect is that when both objectives are jointly evaluated, the area
that is dominated (attainment value = 1) is larger. This is probably because
in the decoupled case, solutions are never surely dominated (even though the
domination probability is extremely low), as no location has been queried under
both objective functions (this can be further seen with the left panel having
triangles denoting locations with a pair of known objective values, and the right
panel having no triangles).

To help measure the uncertainty on the Pareto front associated with the
fitted GPs, we use below the so called Vorob’ev deviation (VD), a set based
variance metric that measures the variability of the q-Attainment fronts relative
to the true frontier—see, e.g., [4] for further details on its properties. Algorithm 1
summarises the testing procedure.
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Algorithm 1: Pseudo-code for the testing procedure

1: Generate the first design of experiments X1 for objective 1.
2: if Coupled case then

X2 = X1, the DoE of the second objective is the same.
end
else
Generate X2 the second DoE. (Decoupled case)
end

3: Build GP models.
4: Generate s conditional samples on some designs Xs from all GPs.
5: Compute the s sets of non-dominated points on couples of samples from the

different GPs.
6: Compute the corresponding Vorob’ev deviation.
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Fig. 2: Attainment function representation in the coupled (left) and decoupled
(right) cases. The blue triangles mark observations in the coupled case, where
both objectives are evaluated. The cyan line represents the estimated Pareto
front of the GP while the reference Pareto front is in blue.

Figure 3 shows the Vorob’ev deviation of the coupled and decoupled designs
for two cases. In the left panel, the design for each objective is uniformly random,
while in the right panel, a LHS design is used for the first objective, and then an
augmented LHS is used for the second objective. The panels show the results of
11 independent runs, with 10 replications for the design of the second objective
in case of decoupled design (visualised as boxplots).

As expected, LHS designs (right panel) lead to slightly lower Vorob’ev devi-
ations than random uniform designs (left panel), in particular for the coupled
case. The larger benefit in case of the coupled design is probably due to the fact
that a cluster or gap in the sample space of the first objective is unlikely to be
duplicated for the second objective in the decoupled design. When LHS is used,
the coupled design (red dots) seems to yield a lower Vorob’ev deviation than the
decoupled designs, possibly due to the effect mentioned above on the size of the
known dominated region. This difficulty in precisely estimating the Pareto front
may also pose challenges for the optimisation procedure, as a reference Pareto
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front is generally required by acquisition functions. Note, however, that in these
experiments we assume equal cost of sampling the two objectives, and equal
lengthscales of the two objectives. As we see later, in other cases decoupling
may be beneficial.

1 2 3 4 5 6 7 8 9 10 11
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4
5

VD vs. ref (decoupled) over 10 runs

Run #
All Uniform

Coupled

1 2 3 4 5 6 7 8 9 10 11
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Vorob'ev deviation (decoupled) over 10 runs

Run #
Both lhs

Fig. 3: Vorob’ev deviation against the true Pareto front. Boxplots are for decou-
pled designs, over 11 different runs and 10 replications per run for the second
stage design in the decoupled case; red dots are the coupled designs. In the left
figure, the designs are uniformly sampled, while in the right figure, an augmented
LHS is used to complement the first LHS design. The value of the coupled design
is in red.

3.2 Initial DoE when evaluations have different costs

Now let us assume the cost is different between different objectives f1 and f2.
The first tasks are to define the total time budget for experiments and get relative
costs of f1 and f2. We will then consider four alternative approaches to DoE,
including a coupled LHS baseline.

1. (Fixed LHS) Rather than sampling incrementally, we use a fixed coupled
LHS design of the required size.

2. (Coupled) Both objective functions are evaluated together.
3. (Decoupled näıve) Both objective functions are evaluated the same number

of times, but at differing locations (generated by Augmented LHS using the
optAugmentLHS function from the R package lhs [7]).

4. (Decoupled) The allocation of total budget to the two functions depends on
lengthscales and relative costs, according to Eq. 1. Objectives with smaller
lengthscales and smaller cost are sampled more often.
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Considering how to split the computational budget, let us consider the sim-
plest case of optimising a (weighted) sum of two objectives. In such a case, if
we want to minimise integrated mean squared prediction error (IMSPE) assum-
ing Gaussian process surrogate models with identical lengthscales, then it is not
possible to improve beyond coupled sampling, as the variances of the two func-
tions just add up, and the optimal design for each function would be the same.
However, if the costs or lengthscales are different, then we could use IMSPE to
determine an appropriate allocation of the budget to the two functions by choos-
ing the number of samples n1 allocated to objective 1 such that the following is
minimised:

min
IMSPE1(n1)

c1 × n1
+

IMSPE2(N − n1)

c2 × (N − n1)
, (1)

where N is the total budget, IMSPE1 (IMSPE2) and c1(c2) are the IMSPE and
cost of evaluating objective f1(f2), respectively.

In practice, if the lengthscales are not known, they may be estimated from
initial data and Eq. 1 may be optimised sequentially rather than all at once.
That is, in the coupled case we iteratively sample the solution that, if both its
objectives are evaluated, reduces the IMSPE the most. For the decoupled case,
we sample the solution and objective which maximally reduces the IMSPE as
calculated in Eq. 1.

As in the previous section, we rely on GP samples in a two-dimensional
decision variable space to define a ground truth. We start with the same four
coupled initial designs for each objective in the various cases, based on LHS, then
add additional samples in a way that minimises IMSPE. For the coupled option,
a discrete search over a thousand uniformly sampled candidates is performed at
each iteration. As for the decoupled version, a local optimisation is conducted
from the best out of one hundred uniformly sampled candidates.

Figure 4 shows the results for the case that the lengthscales for both objec-
tives are equal and known, here, (0.3, 0.4) for the Matérn 5/2 covariance kernel.
In the left column, the evaluation cost for both objectives is the same, in the
middle column the second objective is five times more expensive, and in the right
column, the second objective is 10 times more expensive.

The top row depicts the IMSPE separately for each objective. In the case of
equal cost to evaluate both objectives, also the decoupled designs reduce IMSPE
equally for both objectives. However, if the evaluation cost for the objectives dif-
fer, the decoupled design samples the cheaper f1 (black +) more often, reducing
its IMSPE much more than the IMSPE of the expensive f2 (red +).

The following rows 2-4 show aggregated performance metrics, namely the
average IMSPE, the average root mean squared error (RMSE), and the Vorob’ev
deviation. The results are consistent across all metrics: if the costs of the different
objectives are equal, the IMSPE-minimising coupled and decoupled approaches
perform very similarly (and best), not only with respect to IMSPE but also
RMSE and VD. Next best is the fixed LHS and then, significantly worse, the
näıve design. This is interesting as it suggests that iteratively choosing points to
minimise IMSPE (decoupled as well as coupled) yields not only a lower IMSPE
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but also a lower Vorob’ev deviation than a standard LHS of the same size.
Decoupling näıvely by two augmenting LHS is clearly worst.

If we look at cases of different costs (f2 five times as expensive (middle
column) or 10 times as expensive (right column)), the differences become more
pronounced, and the decoupled design clearly beats the coupled design, as it can
sample the cheaper objective more often and make better use of the available
budget.

Similar results are obtained if the lengthscales are estimated and updated
every iteration, see Figure 5. Note, however, that in these experiments we took
20 initial samples based on LHS, as more data is needed to estimate lengthscales
reliably.

Additional experiments (see Appendix) with different lengthscales for the
two objectives ((0.3, 0.4) for the first, (0.4, 0.2) for the second objective) do not
seem to show a significant differences, but this may simply be because the chosen
lengthscales were still quite similar.

Finally, we treat the case when the costs are varying depending on both x and
the objectives, and we know the cost function. The cost functions correspond as
well to samples from GPs, this time with lengthscales (0.5, 0.8) and (0.6, 0.7) for
the respective objectives, while for the objective values we again use (0.3, 0.4)
for the first, (0.4, 0.2) for the second objective. The results are given in Figure 6.
The decoupled strategy is again more efficient to reduce the IMSPE the fastest,
but there is no noticeable difference in terms of Vorob’ev deviation. The näıve
decoupled design does not make use of the cost information and is thus clearly
worse. Note that the fixed LHS strategy is not sensible here, as it is necessary
to learn about the evaluation cost and use this information in an incremental
design.

4 Discussion and future research ideas

In this paper, we have examined the possibility of improving the quality of the
surrogate models obtained through a DoE in case of multi-objective optimisation
where the evaluation of the different objectives can be decoupled. We found that
for the case of equal costs and lengthscales for the two objectives, decoupling the
evaluations (i.e. evaluating different solutions on different objectives) did tend
to worsen the quality of the Pareto front estimate as measured by Vorob’ev de-
viation. However, when objectives had different costs, decoupling could improve
results substantially in terms of total IMPSE, RMSE, and Vorob’ev deviation.
Interestingly, we found that even in the case of equal costs and lengthscales, allo-
cating samples iteratively by minimising IMSPE yielded better IMSPE, RMSE
and Vorob’ev deviation than using an equally sized LHS design.

While in this paper we have only considered the case of two objectives, we
see no reason why our conclusions should be any different also for more than
two objectives. Indeed, one might expect that the greater flexibility in terms of
which objectives to evaluate for a solution could lead to even larger benefits of
decoupled experimental designs. However, we leave the experimental confirma-
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Fig. 4: Results of different metrics depending on the cost incurred. In the left
column, both objectives have equal cost, in the middle column the cost for f2 is
5 times as high, and in the right column, the cost for f2 is 10 times as high. In
this figure, lengthscales are equal and assumed known.
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Fig. 5: Results of different metrics depending on the cost allocated. In the left
column, both objectives have equal cost, in the middle column the cost for f2 is
5 times as high, and in the right column, the cost for f2 is 10 times as high. In
this figure, lengthscales are equal but unknown (learned and in every iteration).
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Fig. 6: Variable cost for each objective. Top left (resp. right): IMSPE (resp. VD)
vs. cost for the various strategies. Bottom: cost surface and evaluated points for
each strategy: black dots for coupled, red squares for näıve and green triangles
for decoupled. Empty squares and triangles are evaluated on the other objective.
näıve doesn’t take into account the cost.

tion of this hypothesis to future work. Our results use GP generated functions to
avoid the issue of model mismatch. However, it would be good to confirm results
also on other types of functions. Finally, in the future we plan to investigate
other sampling strategies such as taking into account the posterior of the first
objective when deciding where to evaluate the second objective, or to learn the
cost landscape (if the cost depends on the solution evaluated) on the fly.

The code for reproducing the results is available at https://github.com/

mbinois/DecoupledDoe.
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A Results if objectives have different lengthscales

10 15 20 25 30 35

0.
1

0.
2

0.
3

0.
4

0.
5

Cost f1: 1 Cost f2: 1 Same thetas: FALSE Estim: FALSE

cost

A
ve

ra
ge

 IM
S

P
E

Coupled
Decoupled
Naive
Fixed LHS

40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Cost f1: 1 Cost f2: 5 Same thetas: FALSE Estim: FALSE

cost

A
ve

ra
ge

 IM
S

P
E

Coupled
Decoupled
Naive
Fixed LHS

50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Cost f1: 1 Cost f2: 10 Same thetas: FALSE Estim: FALSE

cost

A
ve

ra
ge

 IM
S

P
E

Coupled
Decoupled
Naive
Fixed LHS

10 15 20 25 30 35

2.
0

2.
5

3.
0

3.
5

cost

V
D

Coupled
Decoupled
Naive
Fixed LHS

40 60 80 100

2.
0

2.
5

3.
0

3.
5

cost

V
D

Coupled
Decoupled
Naive
Fixed LHS

50 100 150 200

1.
5

2.
0

2.
5

3.
0

3.
5

cost

V
D

Coupled
Decoupled
Naive
Fixed LHS

Fig. 7: Results of different metrics depending on the cost incurred. In the left
column, both objectives have equal cost, in the middle column the cost for f2 is
5 times as high, and in the right column, the cost for f2 is 10 times as high. In
this figure, lengthscales are equal and assumed known.
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[6] observe that allowing decoupled evaluation of objectives is beneficial if
the different objective functions have different lengthscales, i.e., if one objective
is smooth and varying slowly, while the other is highly multimodal. Intuitively,
one would like to allocate more samples to the more difficult objective. To test
this, we have also run experiments where objectives have different lengthscales,
in particular we used (0.3, 0.4) for the first, (0.4, 0.2) for the second objective.
Results are summarised in Figure 7 for know lengthscales and Figure 8 for learned
lengthscales. The results are very similar to the results with equal lengthscales
reported above, which may be due to the fact that the lengthscales chosen were
too similar to observe a significant difference.
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Fig. 8: Results of different metrics depending on the cost allocated. In the left
column, both objectives have equal cost, in the middle column the cost for f2 is
5 times as high, and in the right column, the cost for f2 is 10 times as high. In
this figure, lengthscales are equal but unknown (learned and in every iteration).
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Abstract. Minimizing the number of vehicles and the total time travelled in order 

to visit each delivery points, is a challenging task studied within the Vehicle 

Routing Problems and applied to several domains. In this paper, we introduce a 

multi-vehicle and multi-depot pickup and delivery problem with time constraints 

considering the capacities of both vehicles and logistic nodes. Our solution, struc-

tured on three-layer architecture, integrates information about sorting nodes and 

delivery nodes, travel distances, and demands (items to be delivered daily) allow-

ing us to simulate arrival times at each destination points. We apply our model to 

a real-world scenario in the postal and logistics domain and we provide compu-

tational experiments to demonstrate the value of our approach. The model allows 

logistic designers to assess the impact of volumes and capacity changes on over-

all delivery times. 

Keywords: Vehicle Routing Problem, Multi Depot, Google OR-Tools, Capac-

ity and Time Windows, Digital twin, Logistic Network, MDCVRPTW. 

1 Introduction 

Nowadays companies in the postal and logistics domain offer different services to the 

citizens and the same-delivery is becoming an added-value services for e-Commerce 

and retailer’s market. The evolution of the needs is leading to different scenarios by 

increasing the alternative delivery endpoints as lockers, post offices, retailers’ networks 

as supermarkets and shopping malls or delivery points at jointly owned buildings. 

These alternatives delivery points added to the traditional customers’ addresses are in 

place for reducing the delivery attempts, impacting couriers’ costs and citizen satisfac-

tions, and maximizing the delivery performance in terms of delivery time and delivery 

success at the first attempt, i.e., the First Time Delivery Success (FTDS) Index. In a 

previous work [1], we analyzed the fleet, and we clustered the vehicles according to 

their costs influenced by working conditions, followed routes, traffic found in urban 

cycle (stop-start traffic), and the type of vehicle (e.g., Fiat Panda, Fiat Punto, Fiat Do-

blò). The e-Commerce boom in post-COVID era leads new challenges and increased 

performances requested for the delivery steps as same-day delivery [2], as Amazon 

Prime, DHL SameDay, FedEx SameDay Delivery, and Poste Delivery Business 
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Express offer same-day delivery for eligible items in selected areas. Therefore, postal 

and logistic industries can benefit from novel decision support systems that can solve 

the problem described by considering the logistic infrastructure required for picking 

and delivery operations and ensuring working time slots and customers' delivery time 

windows. The literature discusses this class of decision problems as integrated order 

picking and vehicle routing problems. Our aim is to model this problem in three-layer 

delivery architecture from sorting to middle-mile delivery and to propose a tool able to 

simulate the delivery time considering volumes, logistics nodes and related capacity 

being a digital twin of the entire networks. In Section 2 we describe Vehicle Routing 

Problem (VRP) and related problems, in Section 3 we discuss the foundation of our 

model and in Section 4 the proposed approach for a real-world application. Next, we 

describe in Section 5 experimentation and computational results. Finally, we present 

our conclusions and some future directions. 

2 Literature review 

2.1 Heuristic and meta-heuristic approaches for solving VRP and its 

evolution 

VRP is a type of transportation problem, which has many applications in real life such 

as logistics and transportation. This problem is an NP-hard that needs to find an optimal 

set of routes for serving a set of customers by a fleet of vehicles. It generalizes the 

Travelling Salesman Problem (TSP) by including different vehicles from the departure 

point and aims at minimizing the total cost for all the vehicle tours with a solution that 

consider the shortest path ensuring that each customer is visited exactly once by a ve-

hicle. Christofides’ algorithm [3], proposed in 1976, tackle the TSP, but its insights and 

principles have influenced approaches to solving the VRP when it is reduced to a series 

of TSP instances. The algorithm consists of four steps: (i) Find a minimum spanning 

tree of the graph, (ii) find a minimum weight perfect matching to form a multigraph, 

i.e., a graph where multiple edges between the same pair of vertices, are allowed, and 

(iv) build a Hamiltonian circuit (a closed tour that visit each vertex once) from the 

multigraph by skipping repeated vertices.   

The goal of Capacity VRP (CVRP) is to determine a set of routes, each starting and 

ending at the warehouse, while adhering to a limited capacity constraints on each vehi-

cle. In addition, delivery points may include Time Windows (TW) requests: meaning 

each customer should be visited by only one vehicle during a specified time interval, 

i.e., CVRPTW problem.   

Time Windows constraints have been studied by Solomon and Desrosiers [4] that sum-

marized the routing problems with time windows. On the other hand, for this complex 

VRP variants such as the VRP with Time Windows in cases where the time windows 

are relatively loose, adaptations of Christofides' algorithm can be particularly useful in 

constructing initial feasible solutions that are then improved upon using other optimi-

zation techniques as experimented by Ufuk Dereci and Muhammed Erkan Karabekmez 

[7] for a case study in Turkey. 
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Heuristics and meta-heuristics as Genetic Algorithms [5] and Tabu Search [6] have 

been proposed in the last decades to solve this class of NP-hard problem.  

Moreover, the VRP can be Single Depot (SD) or Multi Depot (MD) [8] in case of the 

departure is a single fixed node or different points.  

The focus of this research would be on Multi Depot Capacity Vehicle Routing Problem 

with Time Windows (MDCVRPTW). For the sake of simplicity, we call it Capacity 

Vehicle Routing Problem with Time Windows (CVRPTW) with MD. The key objec-

tive of MDVRPTW is to minimize the total cost, which can include various factors such 

as: (i) Total distance or travel time, (ii) Number of vehicles, (iii) Penalties for time 

window violations, and (iv) combination of costs including operational costs. 

Recent research has focused on the MDVRP and optimization of vehicles and routes 

among multiple depots. Among solution studied, Rapanaki et al. [9] addressed the prob-

lem by means of the Artificial Bee Colony (ABC) algorithm, a meta-heuristic approach 

inspired by the behavior of the real honeybee colony. They compared this approach 

with other meta-heuristic such as Particle Swarm Optimization and Genetic Algorithms 

to prove the feasibility. More recently, in December 2023, P. Stodola and J. Nohel [10] 

explored the adaptation of Ant Colony Optimization (ACO) with Node Clustering. The 

algorithm was inspired by the behavior of ants in nature when searching for food and it 

is adopted in conjunction with node clustering for solving the minimization of total 

costs in MDVRP. Node clustering enhances the algorithm’s performance because it is 

used in the phase of creating a solution when the algorithm searches the next node to 

be inserted into one of the routes of vehicles (ants). 

 

2.2 Contribution to the state-of-the-art 

The contribution of this paper is two-fold. First, we propose a model that assigns ca-

pacity to vehicles and nodes. The variability of the time spent in the logistic nodes has 

been modelled to make the algorithm more applicable in real-life where logistic nodes 

in the first-mile of delivery process are crucial hub of the network for the sorting activ-

ities.  Moreover, this paper provides an overall architecture for first-mile and middle-

mile delivery tasks for the postal sector. The proposed approach defines a three-layer 

architecture and solve the routing problem per layer keeping into account cost of the 

solution with the allocated fleet and time constraints.  

3 C2VRPTW with Multi Depots 

3.1 Formulation of CVRPTW problem 

Every day the items to be delivered are collected at the first-mile depots and addressed 

to the first-mile destinations.  The connections between nodes indicate the time needed 

from depot to destination, and the minimization of vehicle is classified as a VRP with 

multi-depots. The problem falls into the domain of CVRPTW as it requires that node 

has a fixed time slot to be served and each vehicle has a fixed capacity. Many formula-

tions have been proposed for the CVRPTW. In particular, we refer to the review pub-

lished by Solomon et al. [4] and the research works of Ursani ed al. [5] and Baldacci et 
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al. [11] which described the problem and its solution, focusing on the state-of-the-art 

of exact algorithms and meta-heuristics, respectively.  

Formally, the CVRPTW with Multi Depots (MD) can be formulated as follows: Let 

𝐺 = ( 𝒩 ∪  ℋ,𝒜) be a directed graph whose node set is the union of a set 𝒩of cus-

tomers and a set ℋ of depots.  

Non-negative costs di,j are associated with each 𝑎𝑟𝑐(𝑖, 𝑗) ∈ 𝒜, representing the travel 

cost, and ti,j is the travel time to reach 𝑗 ∈ 𝒩, starting from 𝑖 ∈ 𝒩, i.e., the difference 

between the arrival and the starting time of the route. 

Each customer 𝑖 ∈ 𝒩 has a delivery demand qi, a delivery time window [𝑎𝑖 , 𝑏𝑖] and a 

vehicle must arrive at the customer before 𝑏𝑖. If it arrives before the time window opens, 

it has to wait until 𝑎𝑖 to service the customer. Moreover, each customer 𝑖 has a service 

time si
k that expresses the arrival time in the node 𝑖, with k ∈  𝒦 that represents a set of 

vehicles. Each vehicle has a known capacity 𝒬k ∀𝑘 ∈ 𝒦.  In this version of the problem, 

we assume that all vehicles can be freely associated with any depot: this corresponds to 

the situation in which the location of the vehicles at the depots is a decision. The vehi-

cles do not necessarily leave their depots at time 0: due to customer time windows, it 

may delay the departure time to arrive at customer locations within their time windows. 

The goal of this problem is the minimization of the total distance travelled by vehicles 

as described in Eq. (1), where 𝑥𝑖𝑗
𝑘  expresses whether the vehicle k travelled from node i 

to node j and it takes the value 0 or 1. 

 

 min∑ ∑ ∑ 𝑑𝑖𝑗𝑗∈𝒩,𝑗≠𝑖𝑖∈𝒩𝑘∈𝐾 ⋅ 𝑥𝑖𝑗
𝑘

                        (1) 

 

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘

 𝑖 ∈ 𝒩, 𝑖 ≠𝑗𝑘 ∈ 𝒦

   =  1  ∀𝑗  ∈  𝒩                                         (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗 ∈ 𝒩, 𝑗 ≠𝑖𝑘 ∈ 𝒦

   =  1  ∀𝑖  ∈  𝒩                                         (3) 

∑ ∑ 𝑞𝑖 ∙ 𝑥𝑖𝑗
𝑘

𝑗 ∈ 𝒩 𝑖 ∈ 𝒩

   ≤  𝒬𝑘      ∀𝑘 ∈  𝒦                                     (4) 

𝑥𝑖𝑗
𝑘 ∙ (𝑠𝑖

𝑘  + 𝑡𝑖𝑗  −  𝑠𝑗
𝑘   )   ≤ 0                                                    (5) 

𝑎𝑖  ≤ 𝑠𝑖
𝑘  ≤ 𝑏𝑖          ∀i ∈ 𝒩, ∀k ∈ 𝒦                                 (6) 

 

Eqs. (2)  and (3) constrain that each customer can be visited by only one vehicle. Eq. 

(4) ensures that the vehicle capacity is not exceeded. The Eq. (5) establishes the rela-

tionship between the vehicle departure time from a customer and its immediate succes-

sor. Moreover, constraints in Eq. (6) affirm that the time windows are observed. We 

assumed that the transportation cost of each vehicle depends on the travelled distance. 
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The transportation network is considered asymmetrical, that is the time spent from node 

i to reach node j can be different from the time spent from node j to node i. 

 

3.2 Introducing node capacity in the problem 

As described in the previous sections in the context of CVRPTW, capacity is typically 

assigned to vehicles rather than nodes. The fundamental reason for this is that capacity 

constraints are designed to limit the amount of goods or services a vehicle can carry or 

perform on a single route, ensuring that the solution is feasible in terms of real-world 

logistics capabilities. In this paper we formulate a real-world problem where the capac-

ity needs to be assigned to the nodes too. The main goal is to model the first-mile sorting 

scenario, where items and goods are collected by the national postal operator, addressed 

to the national sorting centers that have the key task of routing it to destination sorting 

center. In this scenario the sorting centers act both as depots and customers, according 

to the goods flow: (i) the sorting center collects the items of its region and routes the 

items to the national sorting centers according to the destination of the items collected, 

(ii) the same sorting center receives the items from the other sorting centers for items 

to be delivered in its region.  

In details, Fig. 1 depicts the solution of a traditional CVRPTW with 4 nodes (depot at 

node 1 and customers at node 2, 3 and 4). The minimization of the total cost allocating 

the depot in each node is the problem we consider as CVRPTW with MD. 

 

Fig. 1. CVRP with 4 nodes when Node1 is the depot, and the remaining 3 nodes are customers. 

However, in the sorting scenario, each node has a dedicated sorting capacity that affects 

the total time spent. Therefore, this paper extends the CVRPTW problem by introduc-

ing capacity also in the nodes, defining it as C2VRPTW (i.e., VRP with Time Windows 

and Capacity constraints for both nodes and vehicles). For the solution, we model the 

problem by replacing every node n with three nodes 𝑛𝑖𝑛𝑝𝑢𝑡𝑖 and 𝑛𝑜𝑢𝑡𝑝𝑢𝑡ℎ , where 𝑛𝑖𝑛𝑝𝑢𝑡𝑖 

are the nodes that represent the ingestion flows of a real-world logistic node, while 

𝑛𝑜𝑢𝑡𝑝𝑢𝑡ℎ are the output of the logistic node in the fixed working time windows. These 

new nodes have their own time-windows, while the arc connecting 𝑛𝑖𝑛𝑝𝑢𝑡𝑖 and 𝑛𝑜𝑢𝑡𝑝𝑢𝑡ℎ 

is the processing capacity of the logistic node. The vehicle cannot travel among 

𝑛𝑖𝑛𝑝𝑢𝑡𝑖nodes or among 𝑛𝑜𝑢𝑡𝑝𝑢𝑡ℎones.  

Fig. 2 depicts our approach for solving the C2VRPTW with 4 nodes as a CVRPTW 

with 12 nodes and having the distance di,j as the distance between node i and node j and 
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representing the time travelled for reaching node j from node i, while di_in1,i_out1 the time 

travelled within the node for processing the demand of node i. The output node within 

node i has been duplicated to take into account different time windows and available 

resource within the node i. 

 

Fig. 2. C2VRP with 4 nodes when Node1 is the depot, and the remaining 3 nodes are customers. 

In the real-word scenario the capacity of logistic node, that has been modelled by means 

of di_in1,i_out1 , is evaluated according to available resources (employees and sorting ma-

chines) and depends to the processed demand of the node i. The distance matrix used 

by C2VRPTW is defined as follows: 

𝐷 =

{
 
 

 
 
elapsed working processing time in node i

travel time from node i to node j
+∞
+∞
+∞

 

if diin,iout
if diout,jin
if diin,jout
if diout,jout 
 if diin,jin 

∀𝑖 ∈  𝒩 
 ∀i, j ∈  𝒩

∀𝑖 ≠ j  ∀i, j ∈  𝒩
∀𝑖 ≠ j  ∀i, j ∈  𝒩
∀𝑖 ≠ j  ∀i, j ∈  𝒩

(7) 

This definition of distance matrix allows the resolution of C2VRPTW with 𝑛 nodes as 

a CVRPTW problem with 𝑛 × 2 nodes and distance D, considering the split of each 

node in input node and output node. For instance, let assume the depot node A (sorting 

center), that sends items to the node B. In our model, we split A in three different nodes: 
𝐴𝑖𝑛𝑝𝑢𝑡𝑖 , 𝐴𝑜𝑢𝑡𝑝𝑢𝑡1 , 𝐴𝑜𝑢𝑡𝑝𝑢𝑡2   , where 𝐴𝑜𝑢𝑡𝑝𝑢𝑡1 , 𝐴𝑜𝑢𝑡𝑝𝑢𝑡2  differ in terms of time windows. 

The arc connecting 𝐴𝑖𝑛𝑝𝑢𝑡𝑖 and 𝐴𝑜𝑢𝑡𝑝𝑢𝑡1 represents the elapsed working time within the 

sorting center A, while the arc connecting  𝐴𝑜𝑢𝑡𝑝𝑢𝑡1  and 𝐵𝑖𝑛𝑝𝑢𝑡𝑖 is the travel time from 

A to B. Then the CVRPTW model is applied. 

4 Application of C2VRPTW to real-world logistic delivery 

problem 

4.1 Three Layer Architecture Design 

The main depots are the first level of architecture and send and receive items for their 

networks, in other words they work as pick-up and delivery points. Transshipment 
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nodes are intermediate depots for Delivery Centers, closer to the delivery area than the 

main depots. And finally, the third level is the delivery centers which are the collection 

points for customers.  

This architecture can be applied at international level, where the first level is made by 

office of exchanges defined by each country for sending and collection items world-

wide. The second level is national sorting centers which receive the delivery items from 

the arrival office of exchanges, while the third level are the delivery centers in charge 

of last-mile delivery. Similarly, in a national level the architecture has been applied as 

shown in Table 1, where the first-level is the connection among the sorting centers 

which collect regional items and goods to be delivered and address it to the target sort-

ing center, the second level is the city or the facility acting as a transshipment node for 

its logistic area to serve, and finally for the third level, each transshipment node address 

the middle-mile segment to send the item to the target delivery center, the closest to the 

final addressee.  

Table 1. Three level architecture for multi-depot VRP where each first-mile sorting centers col-

lects items to send in Italy. 

Routing level Node Example 

Depot Sorting Center at Origin  Bari 

First-mile Sorting Center at Destination Florence 

Intermediate Logistic Node Transshipment Node Lucca 

Middle-mile end point Delivery Center Viareggio 

Fig. 3 depicts the three layers, i.e., blue circle represents the Origin and Destination of 

the first level (i.e., multi-depot model), and it is called first-mile of the logistic network.   

 

Fig. 3. Three-layer architecture highlighting the direct connections between layers for depot in 

Milan and destination in Viareggio with a transshipment in Lucca. 

This level communicates with the second level of architecture (light blue nodes) in 

charge of regional distribution of item addressed to the target region. Each intermediate 
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node serves its third level targets that are the delivery centers allocated to each of trans-

shipment node. In the figure, each level relates to direct connection that is not visible 

in terms of number of vehicles needed for the delivery tasks, that leads to the design of 

nested VRP problems. In this formulation, we do not consider the time that each vehi-

cles requires to return to the depot because the fleet is managed to avoid the movement 

of empty vehicles, therefore in our model, each vehicle starts from a depot and there is 

no need to return to the same depot. 

 

4.2 Addressing the problem for the different layers 

The three-layer architecture describes the routing problem in a flexible way in order to 

address delivery challenges as the same-day delivery or cost optimization problem. 

Each layer can be modelled by means of a dedicated VRP formulation and differs for 

type of operations and vehicle adopted. In a national scenario, the first-mile is served 

by trucks and the sorting machines installed in the node must route the goods and items 

to the target region and city, for this reason we classify this first level by means of our 

proposed C2VRPTW with MD. Additional constraints in this level is that each node 

acting as a depot and at the same time as a customer node, must look for a trade-off 

between capacity allocated to sorting activities and capacity allocated to delivering re-

ceived items. In other words, the total capacity of each node is allocated: (i) in sorting 

the items, when the node acts as a depot, and (ii) in routing the received items from the 

other nodes, when the node acts as a customer of the first level.  These constraints have 

been introduced due to the machine installed in the node that cannot perform the two 

kinds of operations at the same time. 

 

 

Fig. 4. Mapping of the three-layer architecture with three instances of VRPs. 

The second level oversees connection of sorting center, acting as a depot, to the inter-

mediate nodes which are customers without the processing or sorting needs. For this 

reason, we use for this level a simplified CVRPTW with SD solved by an exact 
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algorithm for the limited number of nodes involved. The last level considers the inter-

mediate nodes as depot and the delivery centers as customers to be served.  

The delivery centers have their own time windows, without routing needs and so for 

this level we can use a CVRPTW with SD. It is a single node because we consider for 

each intermediate nodes a set of customers to be served with their own vehicle (small 

tracks or vans). Therefore, the third level is solved by m problems where m is the num-

ber of transshipment nodes. 

5 Experimental Results 

5.1 Materials and methods 

For our experimentation we consider 3 layers as described in Section 4.2 made by 10 

sorting centers, 149 intermediate nodes and 715 delivery centers. The sorting center 

have their own capacity expressed in parcels per hour in sorting activities that is the set 

of activities performed for routing the items toward other regions and process the item 

received from the network for the area served. The first layer of architecture is modelled 

by the proposed C2VRPTW with MD in order to collect in each node the demand and 

route it to the target nodes. The second layer of architecture is depicted in Fig. 5 where 

each sorting center is connected to the transshipment nodes.  

Finally, the last layer of the architecture is modelled by several VRPTWs with SD, one 

solution per transshipment node that serve a set of customers (i.e., the delivery centers 

of the logistic network).  

 

 

Fig. 5. Sorting centers in yellow and the transshipment node in blue.  

5.2 Software 

The solution is implemented in Databricks using Python language. We adopt a cluster 

made by 8 cores and active memory of 28 GB with Databricks Runtime Version 14.3 
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LTS that includes Apache Spark 3.5.0, Scala 2.12. Moreover, we integrate Python li-

braries for the evaluation of distances between nodes and for adapting the VRP solvers, 

respectively TomTom library and Google OR-Tools [14]. OR-Tools allows executing 

heuristics and meta-heuristics to solve the VRP and has been developed by Google. 

CVRPTW is solved by heuristics and meta-heuristics algorithms, respectively. Coordi-

nates, demands (items to be delivered), distance matrix, number and capacities of vehi-

cles, and the sorting centers are inputs of our model. The algorithm implements a solu-

tion strategy, i.e., local search option, in order to generate a valid solution. Christofides’ 

algorithm [3] is selected as initial solution strategy and ensures the generation of a fea-

sible solution. Then, Guided Local Search (GLS) option tries to improve initial solution 

generated by Christofides’ algorithm. GLS [15] is a general optimization technique 

suitable for a wide range of combinatorial optimization problems. In our implementa-

tion the local search is limited by a fixed number of iteration (avoiding the time limit 

due to possible reproduction of this experiments in a compute node with different per-

formances) that refers to the maximum number of attempts for algorithm can search for 

each node. 

 

5.3 Experiments 

In this section we focus on the results, the data used in C2VRPTW model and the rela-

tive constraints. We collected the information related to: (i) the incoming volume i.e., 

the number of items picked up and delivered from each sorting center (items from origin 

to destination), (ii) the working time slot per node, (iii) the number and the types of 

machines installed in each sorting center in order to estimate the related capacity.  

To address the real-world logistic capabilities of each center, we estimated the total 

time requested to process the incoming volume based on machines and human re-

sources. The estimated total time is then directly proportional to the number of items to 

be delivered (or picked up), to the machine’s type used to process them and the number 

of human resources in the specific sorting center as well.  

Once we defined the distance matrix (see Eq. (7)), we developed the first layer using 

the C2VRPTW model applied to 10 fully connected sorting center. Additionally, we 

assumed that post offices and local senders collect the items by the 5 pm daily and these 

items are processed by each sorting center from 6 pm daily. The solution provides the 

routes and the arrival time in the network for each depot. In details, Fig. 6 shows the 

solution found for Milano PB sorting center, where the number of vehicles is 7, esti-

mating the departure of the vehicle at 08:20 pm, due to the elapsed working time needed 

for sorting the items collected. Each vehicle has its own assigned route and for instance, 

the vehicle 0 depart from output node of Milano PB and serves two customer nodes: 

Firenze and Padova. The total elapsed time (i.e., from 6:00 pm of the first day to 9:26 

am of the second day) includes the travelled time from Milano to Firenze and from 

Firenze to Padova and the time spent in the two crossed nodes too. Similarly, the solu-

tion provides the routes for the remaining 9 nodes acting as depots. 
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Fig. 6. Vehicles’ route for first layer architecture from Milano PB sorting center 

To deal with logistic constraints related to the non-parallelization of processing activi-

ties within the sorting centers, mainly due to a limited number of machines handling 

sorting jobs and the available human resources, we did not allow processing job into 

sorting centers when they are engaged in processing items coming from sorting center 

within the network. In other words, the time slot allocated to collecting the items and 

send them to the entire networks differs from the working time allocated for processing 

the incoming volume.  

Analyzing the overall results, we monitor the behavior of each node and the related 

processing time. In  

Fig. 7, the dark gray area represents the elapsed working time for Firenze, during which 

it sorts items collected within its own area. The light gray area indicates the elapsed 

working time for Firenze when it processes the incoming volume from other sorting 

centers. This distinction highlights the advantages of the routing plan, which facilitates 

the serialization of processing procedures.  

 

 

Fig. 7. Daily elapsed working time of sorting center in Firenze 
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Fig. 8. Daily elapsed working time of sorting center in Padova 

Similarly, Fig. 8 shows the elapsed working time processed by Padova daily. The pro-

cessing steps are entirely sequential, allowing the incoming and outgoing items man-

agement at distinct time slot within a day. 

Fig. 9.  Sorting centers’ working time in three different scenarios 

The model also allows the monitoring of sorting centers’ working time, aiming at iden-

tifying centers where a volume increase may lead to delivery time increases. For this 

purpose, we run the model in three different scenarios: (i) a standard load, (ii) volumes 

with 20% of increase per each segment, and (iii) volumes increased of 50% compared 

to the annual average daily load. If we consider that a sorting center can perform sorting 

operations maximum 19 hours per day (leaving 5 hours for maintenance or administra-

tive tasks), Fig. 9 shows that if the volume increase by 50%, Padova is not able to 

process them in a single day, resulting in an increase of the delivery times.  
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Fig. 10. Analysis of mail flow from Bari (depot) to Viareggio (end customer) 

Our experimentation is extended to the second and third level of the proposed architec-

ture as described in Section 4.2. As example of application (see Fig. 10), we run the 

VRPTW instance with SD, because the set of customers is fixed per each sorting center 

at destination (e.g., Firenze) and each transshipment node (e.g., CL Lucca Recapito). 

In the VRP settings of the third layer, we compared the pro and cons in terms of oper-

ational costs and elapsed time at varying the number of vehicles. 

 

 

Fig. 11. Comparing the number of vehicles in the third level or architecture 

Our aim is to measure the time spent on the different configurations, providing a tool  

able to suggest the optimal number of vehicles in order to address the middle mile de-
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elapsed total time at varying the number of allowed stops in the routes and Fig. 11 

depicts the number of vehicles needed for a direct connection within the third level of 

our architecture (715 vehicles, one per customer nodes), up to the minimum number of 

vehicles allowing some stops in the route and an increase of delivery tasks lesser than 

2 hours (242 vehicles). Considering the average increase of the delivery times, the more 

the average elapsed times increases (up to 38 minutes), the fewer vehicles are requested 

(from 715 vehicles to 242 ones). 

6 Conclusions and future works 

In the vehicle routing problem with capacity and time window (CVRPTW), the objec-

tive is to minimize the number of vehicles with a fixed capacity and then minimize the 

total time travelled. In this paper we considered time constraints and the limited capac-

ity of logistic nodes by introducing the C2VRPTW problem which extends the 

CVRPTW by means of the capacity constraints of each node, thus affecting the total 

time travelled.  

This problem leads to more real-world models for certain applications, such as waste 

collection (where bins have a maximum capacity), delivery to warehouses with limited 

receiving docks, or services that involve equipment or personnel with limited availabil-

ity at the customer site. In the logistic domain, the application is the modelling of the 

sorting centers and delivery centers.  

To sum up, while classical CVRP formulations focus on vehicle capacities, we ex-

tended the problem to include node capacities and we provided a solution, generating a 

digital twin that incorporates information about sorting nodes, delivery nodes, travel 

distances, and daily demand. This allows the simulation of arrival times at each desti-

nation point. Computational experiments are presented to demonstrate the effectiveness 

of the proposed approach. The model allows logistic designers to evaluate the impact 

of volume and capacity changes on the final delivery times at the expected delivery 

points for the design of same-day delivery services. As further works, we propose an 

optimization engine for the network design by means of Genetic Algorithm approach 

[12][13] which provide promising results in optimization problems and in the VRP do-

main [5]. 
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Abstract. We present an innovative Wasserstein Gradient Flow algo-
rithm for solving optimization problems over the space of probability
densities. Di�erently form other state of the art methods, the proposed
approach does not involve any computationally expensive training of
neural networks. The main contribution is a novel parametrization of
the transport map that allows to recast the widely adopted JKO schema
from a scalarized bi-objective to a constrained optimization problem.
This provides three relevant advantages: a better control of the desired
quality of approximation of the optimal transport map; convergence to
the optimum without a�ecting the quality of the transport map; and a
signi�cantly lower computational cost (i.e., runtime-per-iteration).
Experimental results on a set of well diversi�ed test cases provide the
empirical evidence of the advantages o�ered by the proposed approach.

Keywords: Wasserstein Gradient Flow · JKO · Optimal Transport

1 Introduction

1.1 Reference problem

The reference problem is the optimization of a function F(P ) over the space of
probability densities, P, with support X ⊆ Rd. Formally, we search for:

P ∗ ∈ argmin
P∼P

F(P ) (1)

Generally speaking, optimizing means generating a sequence of solutions con-
verging to the optimizer. In our setting this translates into searching for a se-
quence of probability densities starting from an initial random guess P0 and
converging to P ∗, that is P0 → P1 → ... → Pk → ... → P ∗. A common choice is
to set P0 as the d-dimensional normal distribution.

Intriguingly, generating such a sequence is analogous to modelling di�usion
processes across time, that is solving Partial or Stochastic Di�erential Equa-
tions (PDEs and SDEs). The most fundamental result was given in [5] by Jor-
dan, Kinderlehrer, and Otto, who showed that solving the Fokker-Planck PDE
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is equivalent to minimize an entropy functional over the space of probability
measures, equipped with the so-called Wasserstein distance.

Wasserstein distance comes from the Optimal Transport (OT) theory [13,
14, 16]. In informal terms, it is the minimum cost for transporting probability
density mass to transform a source probability density P into a target probability
density P ∗, where the cost is computed in terms of a ground metric, that is a
distance between points of the support X .

In this paper we consider the case that the ground metric is the Euclidean
distance, leading to the so-called 2-Wasserstein distance:

W2
2 (P, P

∗) = min
T♮P=P∗

∫
X
∥T (x)− x∥22 dP (x) (2)

where T♮P = P ∗ means that applying T : X → X to P will return P ∗ as
result. Finally, the symbol T♮ denotes the so-called push-forward operator: while
T (x) is interpreted as a function moving a single data point over X , T♮ represents
its extension to an entire probability measure.

Importantly, under its assumptions, the Brenier Theorem [13] guarantees
that the problem (2) has a unique optimal solution:

T ∗ = argmin
T :T♮P=P∗

W2
2 (P, P

∗) = argmin
T :T♮P=P∗

∫
X
∥T (x)− x∥22dP (x) (3)

with T ∗ named optimal transport map. Moreover, the Brenier theorem also states

that T ∗(x) is equal to the gradient of the convex function φ(x) = ∥x∥2

2 − f(x),
with f(x) the Kantorovich's potential from the dual of (3), therefore

T ∗(x) = ∇φ(x) = x−∇f(x) (4)

By introducing a coe�cient τ ∈ [0, 1], a continuous-time representation of
the optimal transport map T ∗ is obtained:

T ∗
τ (x) = x− τ∇f(x),with τ ∈ [0, 1] (5)

It is important to remark that the initial aim was to search for a sequence
P0 → P1 → ... → Pk → ... → P ∗, therefore it is more convenient to consider the
following discrete-time representation of T ∗:

T ∗
k (x) = x− k

K
∇f(x),with k = 0, ...,K (6)

where k/K is a discretization of τ from the continuous-time representation.
As a result, the sequence P0 = T ∗

0 ♮P0 → ... → T ∗
k ♮P0 → ... → T ∗

K♮P0 = P ∗

solves the reference problem (1), with T ∗ the solution of (3).

Another important theoretical result from OT is that the 2-Wasserstein dis-
tance is convex on P � this is why T ∗ is unique � meaning that P0 is trans-

formed into P ∗ by following the so-called Wasserstein Gradient Flow (WGF).
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Consequently, searching for T ∗ by solving (3) translates into convexifying the
reference problem (1), over the space P of probability densities equipped with
the 2-Wasserstein distance.

Since P ∗ is not known a priori, T ∗ cannot be directly computed. However, it
is still possible to approximately follow the WGF, as summarized in the following.

1.2 Wasserstein Gradient Flow via JKO

The JKO (Jordan�Kinderlehrer�Otto) scheme [5] is the standard algorithm to
solve (1) by approximately following the WGF. It is a proximal point method

with respect to the 2-Wasserstein distance, and can also be considered as a
backward Euler discretization. At a generic iteration k, JKO transports the
current probability density, Pk, into the next Pk+1 according to:

Pk+1 = argmin
P∼P

{
1

2h
W2

2 (P, Pk) + F(P )

}
(7)

with h the JKO's step size.
Solving (7) means searching for the next probability density Pk+1 which

minimizes F while remaining close � in 2-Wasserstein terms � to the current Pk.
Iteratively solving (7) generates a sequence P0 → ... → Pk → ... → PK ≃ P ∗

whose rate of convergence to P ∗ and closeness to the WGF both depend on h.
Indeed, with h → ∞ the �rst term in (7) goes to zero, meaning that we are

minimizing F completely ignoring the WFG. As a result, the obtained sequence
will not comply with T ∗. On the contrary, if h → 0 then the �rst term becomes
more relevant, so that the generated sequence will comply with T ∗ but it will
converge signi�cantly slowly to P ∗.

Finally, (7) is formulated in terms of P ∈ P, so it is necessary to �nd a way to
deal with probability densities as decision variables. State-of-the-art approaches
recast (7) as an optimization problem in terms of a parametrized transport map
from Pk to P . Some parametrizations are described as follows.

1.3 Related works

The most widely adopted WGF approaches propose to parametrize T (x) by
approximating the convex function φ(x) through an Input Convex Neural
Network (ICNN) [7, 8, 12], a speci�c type of Deep Neural Networks (DNNs).

DNNs are also used in [9, 10] to parametrize T (x) and the Kantorovitch
potential f(x) through two di�erent networks. The �rst DNN provides an esti-
mate of f(x) which is then used as an input of the second DNN � along with
x � to estimate T (x). Since T (x) is estimated by the second DNN, the gradient
computation is avoided, contrary to the ICNN-based approaches.

More recently, [3] proposed to parametrize T (x) through a Residual Neural
Network (ResNet) and a variational formulation of the objective function
formulated as maximization over a parametric class of functions. This allows for
reducing computational burden, with respect to the previous methods, by using
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small data samples and scaling well with the dimensionality d of the support
X . The small data regime setting has been also recently investigated in [1], who
proposed to combine OT solvers and Gaussian Process regression to e�ciently
learn transportation map.

The most relevant issue, for all the neural approaches, is that at least one
neural network must be trained, leading to relevant computational costs at each
JKO steps. Since compliance to WGF requires h → 0, this issue becomes even
more critical. Moreover, there are not speci�c guidelines on how to choose the
most suitable network: it is not only a matter of type (e.g., ICNN, DNN, ResNet),
but also architectural (number and type of layers, number of units per layer, etc.).

Moreover, [6] has recently analyzed the expressive power of a class of nor-
malizing �ow models based on neural networks. These models can only generate
planar �ows, which are proved to be highly expressive only in the case of uni-
variate probability densities (i.e., having support X with dimensionality d = 1).
Otherwise, they may have poor approximation power. Another relevant study
about the convergence of WGF is given in [2].

As far as the compliance to the optimal transport map T ∗ is concerned, the
topic has been recently investigated in [11] � de�ned as self-consistency in the
case of PDE solutions � and in [15], who introduced the so-called Monge Gap
as a measure of how much a transport T deviates from the ideal properties
expected by the optimal T ∗. Speci�cally, they propose to use the Monge Gap as
a regularization term for learning all the transportation maps.

1.4 Contributions

We summarize here the main contributions of this paper.

� A simple algebraic parametrization of T leading to a more e�ective, e�cient,
and explainable formalization of JKO: from a bi-objective to a constrained
optimization problem.

� As belonging to the family of radial �ows, the proposed parametrization
overcomes most of the limitations of the planar �ows induced by DNNs [6].

� A set of empirical results showing the bene�ts of the proposed approach, on
a well-diversi�ed set of experiments on bi-variate probability densities.

� A sketch of the extension of the approach to the case of multi-variate prob-
ability densities with d > 2.

2 The proposed approach

2.1 A simple algebraic parametrization of T

For the sake of simplicity we present our approach for d = 2 (i.e., bivariate
probability densities) and then extend it to d > 2. Our parametrization is:

T̃ (x) = x− λ(x)vRα(x) (8)
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with λ : Rd → R+
0 , α : Rd → [0, 2π], and Rα a rotation matrix, such as:

Rα(x) =

[
cos(α(x)) − sin(α(x))
sin(α(x)) cos(α(x))

]
(9)

and where both clockwise and counter-clockwise rotation matrix can be used in-
distinctly. Finally, v is a reference versor: for simplicity we consider v =

(
1√
d

)
1d,

where 1d denotes the all-ones vector and, therefore, ∥v∥ = 1.
From the Brenier theorem we know that T (x) = x−∇f(x), so we are posing

∇f(x) = λ(x)vRα(x). The parameters to be learned in our parametrization are
the two functions λ(x) and α(x). This is in line with the other parametrization
approaches which also approximate functions (i.e., ∇φ(x), f(x), T (x)). Contrary
to the ICNN based parametrizations, but analogously to [10, 9, 3], our approach
does not require any assumptions on these two functions.

It is important to remark that the proposed parametrization is signi�cantly
close to the de�nition of radial �ows reported in [6] and analysed along with
planar �ows induced by DNNs. Importantly, planar �ows are proved to o�er
poor normalizing �ows when d > 1.

Finally, according to the proposed parametrization, the JKO schema can be
recast into:

λk(x), αk(x) = argmin

{
1

2h
W 2

2 (Pk+1, Pk) + F(Pk+1)

}
(10)

with Pk+1 = T̃k♮Pk. In the next section we describe how our parametrization
leads to a new � and more e�ective, e�cient, and explainable � way to solve the
reference problem (1).

2.2 From JKO to Constrained JKO

Exactly as the other DNN based approaches, we learn our parameters � that are
the two functions λ(x) and α(x) � by accessing to point clouds (i.e., empirical
distributions) sampled from probability densities P0, ..., Pk.

Analogously to [12], denote with Xk ∼ Pk the point cloud at iteration k and,
obtained as:

Xk = T̃k−1♮
(
T̃k−2♮

(
...♮

(
T̃0♮X0 = X0

)))
(11)

with X0 ∼ P0 and |X0| = N . According to our parametrized transport map

T̃ (x), every point of the current cloud Xk is transported as follows:

x
(i)
k+1 = x

(i)
k − λ

(i)
k v R

α
(i)
k

, ∀i ∈ {1, ..., N} (12)

with λ
(i)
k and α

(i)
k shorthand for λ(x

(i)
k ) and α(x

(i)
k ).
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Since we are working with point clouds, and according to our parametrization,
we can rewrite the 2-Wasserstein distance as follows:

W2
2 (Xk+1,Xk) =

1

N

N∑
i=1

∥x(i)
k − λ

(i)
k vR

α
(i)
k

− x
(i)
k ∥22 =

=
1

N

N∑
i=1

√
|λ(i)

k | ∥vR
α

(i)
k

∥22

(13)

Since rotation does not modify the module of the rotated v, and according
to our choice for v, we have ∥vR

α
(i)
k

∥22 = 1. Finally, we can write:

W2
2 (Xk+1,Xk) =

1

N

N∑
i=1

√
λ
(i)
k (14)

with λ
(i)
k > 0.

This result is crucial because W2
2 (Xk+1,Xk) is the �rst term of the objective

function in the JKO scheme (7) � when point clouds are used as samples from
probability densities in P. Thus, we can directly set a threshold on it, instead
of weighting its relevance with respect to F(Pk+1) through the JKO's step h.
More important, according to (14), we can now easily compute W2

2 (Xk+1,Xk),
without the need to use expensive OT solvers (e.g., based on dual methods) or
approximated methods.

The value of the threshold ε explicitly quanti�es how much we want
to comply with the WGF.

Thanks to our parametrizantion, and according to the previous considera-
tions, we can now formalize our constrained-JKO (cJKO) scheme, that is:

λk,αk = argmin
λ∈R+N

0 ,

α∈[0,2π]N

F(Pk+1)

s.t.
1

N

n∑
i=1

√
λ
(i)
k ≤ ε

(15)

with ε a small positive quantity, λk =
(
λ
(1)
k , ..., λ

(N)
k

)
, αk =

(
α
(1)
k , ..., α

(N)
k

)
,

and Xk+1 =
{
x
(i)
k+1 = x

(i)
k − λ

(i)
k vR

α
(i)
k

}
i=:N

.

In simpler terms, we are searching forXk+1 ∼ Pk+1 which minimizes F(Pk+1)
within a 2-Wasserstein neighbourhood of Xk.
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Analogies and (important) di�erences with JKO. The most important
analogy is about ε, whose role is analogous to that of h. Indeed, ε → 0 in cJKO
should have the same e�ect of h → 0 in JKO: the compliance to the WGF
becomes more relevant than optimizing F(P ), requiring a longer sequence to
converge to P ∗ (i.e., K → ∞). However, from a quantitative perspective, their
impacts are completely di�erent.

Simply, h is just a scalarization weight into a scalarized bi-objective prob-
lem. Clearly, it is di�cult to establish a suitable value for h without any prior
knowledge about F(P ). Moreover, using a static value for h � that is the com-
mon choice � leads to a signi�cantly di�erent relevance of the compliance to
the WGF along the iterative optimization scheme: it becomes larger with F(P )
approaching to zero3. However, a poor compliance to WGF during the �rst JKO
steps will de�nitely compromise the overall compliance.

The proposed cJKO scheme and its parameter ε allow to overcome these
limitations. Indeed, the minimum level of compliance to the WGF (i.e., ε) can
be chosen in advance and kept �xed along the overall iterative optimization
process, independently on the values of F(P ).

Figure 1 shows an example of the trajectories from X0 to XK depending on
three di�erent values of ε. The three presented cases converges to the same value
of F(XK) (and same �nal point cloud) but within a di�erent number of cJKO
steps: the smaller the value of ε, the larger the number of iterations K, and the
better the compliance to the WFG (i.e., trajectories are closer to the actual T ∗,
because they are more straight and do not overlap).

Fig. 1. An example of results from cJKO, for three di�erent values of ε. In all the
cases the minimum of F(P ) is reached (left), within a di�erent number of steps and a
di�erent compliance to the WGF (and to the actual T ∗, consequently).

3 Experiments

3.1 Experimental setting

The experiments presented in this paper are devoted to demonstrate the higher
e�ectiveness and e�ciency of the proposed cJKO with respect to the standard
JKO. For both the algorithms, the proposed parametrization of T (x) is used.

3 assuming F(P ) ≥ 0 ∀ P ∈ P
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Objective function F(P ). We have considered two objective functions, sepa-
rately. The �rst is exactly the 2-Wasserstein distance, that is F(P ) = W2

2 (P, P
∗),

while the second objective function is the symmetrised Kullback-Liebler diver-
gence, that is F(P ) = symDKL(P ||P ∗), with

symDKL(P ||P ∗) =
DKL(P ||P ∗) +DKL(P

∗||P )

2
(16)

and DKL(A||B) the Kullback-Liebler divergence between A and B.
The aim is to investigate the capability of JKO and cJKO to comply with

the WFG, when F(P ) is exactly, and is not, the 2-Wasserstein distance.

Source and target distributions. Three di�erent settings are analysed, sep-
arately for the two objective functions previously mentioned:

� from a Multivariate Normal (MVN) distribution to a di�erent one,
� from a MVN distribution to a Gaussian Mixture, and
� from a Gaussian Mixture to a MVN distribution.

A graphical representation of the three case studies is reported in Figure 2.

Fig. 2. The three di�erent settings considered in the paper.

Con�gurations of the algorithms. Here, we summarize the setups of the two
algorithms. They work with a point cloud sampled form the source distribution
and consisting of N = 15 data points. Di�erent values for the JKO's and cJKO's
parameter are tested, speci�cally h, ε ∈ {0.5, 0.25, 0.1, 0.05, 0.01}. Termination
criteria are: no improvement for 10 consecutive iterations (aka patience or early-
stopping) or a maximum number of iterations reached, speci�cally 1000 for JKO
and 5000 for cJKO (the di�erence will be motivated in the results section).

Finally, due to their di�erent nature, two methods are separately used to
solve the JKO and cJKO steps. Speci�cally, L-BFGS-B is used for JKO while
COBYLA (Constrained Optimization BY Linear Approximation) is used for
cJKO (from the NLOPT library).

The code has been developed in R and is freely available at the following
repository: https://github.com/acandelieri/LION_2024_cJKO.git
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3.2 Performance metrics

Quality of T̃ (x) with respect to F(P ∗). The most obvious way to measure

the quality of a solution T̃ is the associated value of the objective function.

Quality of T̃ (x) with respect to P ∗. It is aimed at measuring the quality of

T̃ in terms of closeness to P ∗, and we have used the Frechét Inception Distance
(FID) [4], that is the standard metric for assessing the quality of images created
by a generative model. It compares the distribution of generated images with
the distribution of a set of real images (i.e., ground truth). Interestingly, FID is
nothing more than the 2-Wasserstein distance between data generated from the
source distribution, through a given T̃ , and the actual target distribution:

FID(T̃ ) := W2(T̃ ♮P0, P
∗) (17)

With respect to our reference problem, FID quanti�es the mismatch between
our �nal solution, T̃ ♮P0, and the actual optimizer P ∗.

Monge Gap has been recently introduced to measure how far a given T deviates
from the optimal one [15]. Thus, we decided to use it as a measure of compliance

of every T̃ obtained via JKO and cJKO. It is de�ned as:

MP (T̃ ) =

∫
X
∥T̃ (x)− x∥ dP (x) − W2

2 (P, T̃ ♮P ) (18)

Speci�cally, the �rst term is the transportation cost from P to T̃ ♮P through
T̃ , while the second is the optimal (i.e., minimum) transportation cost between

P and T̃ ♮P . Denote with T̃ ∗ the optimal transport from P to T̃ ♮P : the higher
the value of MP (T̃ ), the lower the compliance between T̃ and T̃ ∗.

Runtime is �nally used to measure the e�ciency of JKO and cJKO. Both
the algorithms were run on the same system: Intel(R) Core(TM) i7-7700HQ,
2.80GHz, with 16.0 GB RAM, Microsoft Windows 10. No GPU has been used.

4 Results

4.1 Results for F(P ) = W2
2 (P, P ∗)

We start with the easiest case, with F(P ) exactly the 2-Wasserstein distance
from P ∗. This means that both the algorithms are �forced� to follow the WFG;
however, they show completely di�erent behaviours.

Results are organized into three tables, one for each case study: from a MVN
to another MVN (Table 1), from a MVN to a Gaussian Mixture (Table 2), and
from a Gaussian Mixture to a MVN (Table 3).

Result #1. As expected, the Monge Gap MP0
(T̃ ), for both the algorithms, de-

creases with the parameters � h and ε � decreasing, meaning that the compliance
of T̃ to the WGF increases.
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Result #2. The most interesting result is related to the quality of the T̃ pro-
vided by the two algorithms, with the quality measured both in terms of objective
value and distance from the optimizer. It is important to remark that, in this
case F(P ) = W2

2 (P, P
∗), thus FID(T̃ ) = [F(P )]

1
2 .

Speci�cally, the quality of the T̃ provided by JKO gets worst with h decreas-
ing, contrary to cJKO. The underlying motivation is the bi-objective nature of
JKO, which searches for a trade-o� between compliance to the WGF and min-
imization of F(P ). On the contrary, cJKO minimizes F(P ) while guaranteeing
a minimum level of compliance to the WFG, at each step.

However, if the number of cJKO are not su�cient to converge, the quality
of T̃ will result dramatically poor (i.e., ε = 0.001 in all the experiments). This
leads to the following result.

Result #3. cJKO requires more steps than JKO to converge to an optimal
solution. Moreover, in the case that the maximum number of steps is prematurely
reached, then the quality of T̃ is signi�cantly poor, due to the fact that the �nal
PK is somewhere in the middle of the trajectory de�ned by the optimal transport
map. On the other hand, the computational e�ciency of cJKO is signi�cantly
higher than JKO, as detailed in the next result.

Result #4. The average runtime-per-iteration is signi�cantly di�erent between
the two algorithms, with 4.393 seconds for JKO and 0.178 seconds for cJKO. This
means that for each JKO step cJKO performs, approximately, 23 steps. Thus,
it is important to remark that 5000 maximum iterations assigned to cJKO are
anyway few when compared to 1000 assigned to JKO. However, cJKO has always
provided the best solution in this �rst session of experiments.

Table 1. Case study: from MVN to another MVN, F(P ) = W2
2 (P, P

∗). The best

solution in bold (i.e., lowest F(P ), FID(T̃ ), and MP0(T̃ )). The symbol * denotes that
the maximum number of iterations was reached.

Method Parameter MP0(T̃ ) F(PK) FID(T̃ ) iterations Runtime [secs]

h = 0.5 0.0752 0.0000 0.0018 59 201.602
h = 0.25 0.0413 0.0000 0.0031 75 267.452

JKO h = 0.1 0.0369 0.0000 0.0055 168 563.958
h = 0.05 0.0338 0.0001 0.0107 284 1023.167
h = 0.01 0.0022 0.0008 0.0289 1000* 4664.409

ε = 0.5 0.1050 0.0292 0.1709 52 8.777
ε = 0.25 0.0172 0.0005 0.0227 118 21.167

cJKO ε = 0.1 0.0066 0.0000 0.0044 559 105.415
ε = 0.05 0.0000 0.0000 0.0009 2138 370.080

ε = 0.01 0.0000 112.6710 10.6147 5000* 895.828
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Table 2. Case study: from MVN to a Gaussian Mixture, F(P ) = W2
2 (P, P

∗).

Method Parameter MP0(T̃ ) F(PK) FID(T̃ ) iterations Runtime [secs]

h = 0.5 0.1981 0.0000 0.0017 76 273.837
h = 0.25 0.0650 0.0000 0.0028 83 341.697

JKO h = 0.1 0.0972 0.0000 0.0049 185 652.702
h = 0.05 0.0326 0.0001 0.0082 310 1300.729
h = 0.01 0.0027 0.0006 0.0252 1000* 5119.579

ε = 0.5 0.1491 0.0197 0.1404 52 10.778
ε = 0.25 0.0738 0.0012 0.0351 149 28.969

cJKO ε = 0.1 0.0036 0.0000 0.0031 628 127.741
ε = 0.05 0.0000 0.0000 0.0010 2471 540.053

ε = 0.01 0.0000 139.5640 11.8137 5000* 1090.61

Table 3. Case study: from MVN to a Gaussian Mixture, F(P ) = W2
2 (P, P

∗).

Method Parameter F(PK) FID(T̃ ) MP0(T̃ ) iterations Runtime [secs]

h = 0.5 0.1387 0.0000 0.0018 64 238.925
h = 0.25 0.0989 0.0000 0.0031 82 273.268

JKO h = 0.1 0.0780 0.0000 0.0060 163 770.369
h = 0.05 0.0751 0.0001 0.0099 381 1550.395
h = 0.01 0.0006 0.0011 0.0338 1000* 4421.626

ε = 0.5 0.2029 0.0503 0.2242 32 5.281
ε = 0.25 0.0754 0.0012 0.0344 88 14.459

cJKO ε = 0.1 0.0074 0.0001 0.0091 418 68.844
ε = 0.05 0.0011 0.0000 0.0011 1557 261.011

ε = 0.01 0.0000 70.5449 8.3991 5000* 837.707

4.2 Results for F(P ) = symDKL(P, P ∗)

Now we move to the more complicated experiment, in which we have considered
F(P ) = symDKL(P, P

∗). In this case the algorithms are not forced to follow
the WGF because the objective function is not the 2-Wasserstein distance from
P ∗. Instead, they are now minimizing the symmetrised version of a divergence
measure, that is not a distance over the space of probability density. Moreover, it
is not convex on P � contrary to the 2-Wasserstein distance � and, consequently,
it could have many local optima.

As in the previous section, results have been organized in three di�erent
tables, one for each case study: MVN to another MVN (Table 4), MVN to
Gaussian Mixture (Table 5), and Gaussian Mixture to MVN (Table 6).

All the previous results (#1, #2, #3 and #4) still hold also in this setting.
Furthermore, we can make other relevant considerations.

Result #5. Now, more frequently JKO terminates because the maximum num-
ber of steps is reached. This occurs when the source is a MVN, and especially if
the target is a Gaussian Mixture.

Result #6. Runtime increased for both the algorithms, due to the computation
of symDKL(P ). The ratio between the runtime-per-iteration is unchanged: it is
7.151/0.291 = 25 (against 23 in the previous experiment).



78 A. Candelieri et al.

Table 4. Case study: from MVN to another MVN, F(P ) = symDKL(P, P
∗). The

best solution in bold (i.e., lowest F(P ), FID(T̃ ), and MP0(T̃ )). The symbol * denotes
that the maximum number of iterations was reached.

Method Parameter MP0(T̃ ) F(PK) FID(T̃ ) iterations Runtime [secs]

h = 0.5 0.0217 0.0000 1.0779 103 652.321
h = 0.25 0.0130 0.0000 1.1237 193 1227.840

JKO h = 0.1 0.0145 0.0000 1.0660 484 2593.077
h = 0.05 0.0029 0.0001 1.0769 1000* 5067.950
h = 0.01 0.0000 0.1061 1.4073 1000* 6316.788

ε = 0.5 0.1534 0.0019 1.2496 60 14.114
ε = 0.25 0.0438 0.0000 1.2384 119 27.349

cJKO ε = 0.1 0.0044 0.0000 1.0200 648 194.489
ε = 0.05 0.0029 0.0000 1.1358 2522 732.500

ε = 0.01 0.0000 124.1790 11.2725 5000* 1228.102

Table 5. Case study: fromMVN to a Gaussian Mixture, F(P ) = symDKL(P, P
∗).

Method Parameter MP0(T̃ ) F(PK) FID(T̃ ) iterations Runtime [secs]

h = 0.5 0.0498 2.0537 3.6999 792 3744.600
h = 0.25 0.0341 2.0540 3.9952 1000* 5585.741

JKO h = 0.1 0.0248 2.0561 4.0512 1000* 7514.572
h = 0.05 0.0074 2.0869 3.8257 1000* 10331.930
h = 0.01 0.0000 5.5040 7.5413 1000* 8185.894

ε = 0.5 0.1811 2.0544 4.0787 59 21.892
ε = 0.25 0.0422 2.0537 4.4647 183 60.722

cJKO ε = 0.1 0.0080 2.0537 3.9348 1026 359.578
ε = 0.05 0.0010 2.0537 3.8310 3991 1414.969
ε = 0.01 0.0000 43.2750 12.6719 5000* 1718.191

Table 6. Case study: from Gaussian Mixture to MVN, F(P ) = symDKL(P, P
∗).

Method Parameter MP0(T̃ ) F(PK) FID(T̃ ) iterations Runtime [secs]

h = 0.5 0.0867 0.0000 0.9249 56 357.089
h = 0.25 0.0813 0.0000 0.8735 83 584.501

JKO h = 0.1 0.0363 0.0000 0.9800 187 1405.229
h = 0.05 0.0194 0.0000 1.0349 394 2844.871
h = 0.01 0.0000 0.0015 1.1259 1000* 9204.589

ε = 0.5 0.6064 0.0025 0.9240 35 8.667
ε = 0.25 0.0925 0.0000 0.9608 90 22.147

cJKO ε = 0.1 0.0117 0.0000 1.0054 405 89.379
ε = 0.05 0.0000 0.0000 0.9457 1594 428.945

ε = 0.01 0.0000 40.6964 8.5314 5000* 1316.771
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4.3 Further results

To investigate the impact of the size N of the point cloud, we have repeated
the experiments of the previous two subsections with N = 30 instead of N =
15. Due to page size limitations, we cannot report these results extensively, so
we summarize the most relevant outcomes. First, the previous results are all
con�rmed. Second, a large number of steps should be used to achieve the same
quality levels of the solutions. Third, the runtime-per-iteration resulted more
than doubled for JKO, while the increase is smaller for cJKO.

Finally, we considered the DNN based WGF recently proposed in [12] � for
which the code is freely available. We just addressed the case �from MVN to
a Gaussian Mixutre� with F(P ) = symDKL. We used the value for the JKO's
step h suggested by the authors, while the maximum number of steps K was set
to 40, 60, and 80. As expected, the objective value decreased with K increasing
� even if it was signi�cantly larger than cJKO (i.e., 4 to 6 times larger). On
the other hand, the Monge Gap was always 0.000. Runtime was comparable to
cJKO, speci�cally: 791.765, 1525.722, and 2558.914 seconds, for K = 40, 60, 80,
respectively. However, the runtime-per-iteration is signi�cantly larger than cJKO
and increases with K: 1.994, 25.429, and 31.986 seconds-per-iteration. This is
due to the need for repeatedly training a DNN on an dataset whose size increases
with K. On the contrary, the runtime-per-iteration of cJKO does not depend on
K, making our approach more computationally e�cient. s

5 Extending to d > 2 dimensions.

We provide in this section the extension of our approach � and speci�cally our
parametrization � to multivariate probability densities, with d > 2. At the time
of writing, the code is not yet entirely developed for d > 2, and this is the main
reason for the lack of experiments in higher dimensions.

Recalling the proposed parametrization (8), the only modi�cation regards the
rotation matrix Rα(x). Indeed, the versor v was already de�ned for any d > 0.

In a space with d > 2 dimensions, rotation must be considered for each pair
of axes, so α(x) is now a vector-valued function A : Rd → [0, 2π](d−1).

Consequently, the entries of the d× d rotation matrix RA(x) are now de�ned
as explained in the following. Assume that Ap(x) is the angle between axes ℓ
and κ, then we construct a rotation matrix for that angle, whose entries are:

R
[p]
ij =



cos(Ap(x)) if (i, j) = (ℓ, ℓ)

− sin(Ap(x)) if (i, j) = (ℓ, κ)

sin(Ap(x)) if (i, j) = (κ, ℓ)

cos(Ap(x)) if (i, j) = (κ, κ)

1 if i = j ∧ i ̸= ℓ, κ

0 otherwise

(19)
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Therefore, we have a matrix R[p] for each angle (i.e., d− 1 matrices overall),
and the �nal rotation is the concatenation of the single rotations, that is:

RA(x) =

(d−1)∏
p=1

R[p] (20)

Interestingly, there is no need to modify λ(x) and, consequently, there is not
any impact on the computation of the constraint in (15).

On the other hand, there is a criticality related to the number of decision
variables in (15): their number increases linearly with d, speci�cally it is given
by N + (N × (d− 1)). However, it is important to remark that, when one works
with small data samples, this number is way lower than the parameters to be
optimized for training a DNN.

6 Conclusions

We have presented a novel transport map parametrization enabling a more e�ec-
tive, e�cient, and explainable formulation of the JKO scheme for WFG. Specif-
ically, we have presented the constrained-JKO (cJKO) scheme and evaluated it
on a set of diversi�ed case studies, all related to the optimization over a space of
probability densities. The practical advantages are clearly quanti�ed, in terms
of quality of the solution as well as optimality of the transport map (i.e. Monge
Gap). Moreover, number of iterations for converging to an optimal solution, run-
time, and run-time-per iteration, have been used as e�ciency measures, resulting
signi�cantly lower for cJKO with respect to JKO (with the same transportation
map parametrization).

It is important to remark that the new parametrization, and the consequent
cJKO formalization, represent a relevant leverage for all DNN methods, because
DNN � as well as other Machine Learning algorithms � could be used to learn
and model the two functions underlying the proposed prametrization (i.e., λ(x)
and α(x)). Indeed, cJKO allows to signi�cantly reduce the computational burden
required to solve the standard JKO step.

Finally, future works will address experiments on d > 2 case studies.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Gaussian Process based Bayesian Optimization, also known
as kernelized bandits, is the standard method for sequentially optimizing
black-box and expensive to evaluate functions. Its sample e�ciency is the
reason behind its success. However, due to the need for �tting a Gaus-
sian Process model at each iteration, its own computational cost cubically
increases with the number of function evaluations, while instability pos-
sibly arises especially in the noise-free setting. Moreover, selecting the
most suitable trade-o� mechanism between exploration and exploitation
is not trivial, and theoretical convergence proofs for well-known acquisi-
tion functions only hold under the (impractical) assumption of knowing
in advance the speci�c Reproducing Kernel Hilbert Space which the ob-
jective function belongs to. We propose a novel method for �tting the
Gaussian Process at a constant time, independently on the number of
function evaluations, while also dealing with instability and exploitation-
exploration trade-o�. This leads to a novel Bayesian optimization frame-
work in which modelling of the objective function and acquisition are
simultaneously addressed by �tting the Gaussian Process. Empirical re-
sults on a preliminary set of well di�erentiated test problems show that
the proposed algorithm provides a higher e�ectiveness and e�ciency than
the most well-known no regret algorithm (i.e., GP-LCB).

Keywords: Bayesian Optimization · Gaussian Process · no-regret.

1 Introduction

Bayesian Optimization (BO) [1, 17] is used to solve real-life problems having
black-box and expensive to evaluate objective functions. Relevant examples arise
in Automated Machine Learning [13, 19, 21], robotic [4, 28], drug discovery [14].

The basic BO algorithm consists of two nested loops. The outer loop is de-
voted to query the objective function, collect the associated observation(s), and
consequently �t a probabilistic surrogate model of the objective function. The
inner loop is devoted to identify the next promising query by optimizing an ac-

quisition function which balances exploration and exploitation, given the current



MLE-free Gaussian Process based Bayesian Optimization 83

surrogate. Intuitively, it is easy to associate the outer and the inner loop respec-
tively to learning (an approximation of the objective function) and optimizing

(the choice of the next query to do). Not surprisingly, BO resulted really close
to humans' strategies when the assigned task is to search for the optimum [10].

Gaussian Process (GP) regression [26, 18] is the most common choice for the
surrogate model, leading to GP-based BO (also known as kernelized bandits).
Obviously, BO is convenient when the computational cost of each iteration of
the outer loop is lower than querying the objective function. However, the cost
of GP-based BO cubically increases with the number of queries, due to the GP
learning step.

From a "human perspective" this is quite counter-intuitive: the more I know

about the problem the more expensive is to learn further... how is it possible?.
There is a "computational reason": as a kernel method, the GP's core op-

eration is the inversion of a kernel matrix, with complexity O(n3), where n is
the number of observations. Moreover, most of the GP learning methods require
many matrix inversions to tune the kernel's hyperparameters depending on data.

Importantly, it was not a critical issue for the success of BO. Indeed, BO is
sample-e�cient, meaning that it can �nd a better solution than other methods
given a small number of queries, typically 15-20 times the number of dimensions
of the problem [1, 17]. Although this claim holds up to 20 dimensions1, it was
the leverage for the GP-based BO's success: if few queries are allowed, the cost
for learning the GP is negligible w.r.t. that for querying the objective function.

Unfortunately, computational cost/complexity is not the only issue: the con-
dition number of the kernel matrix increases with n, leading to instability and
then the impossibility to invert it. The most common workaround consists into
adding arti�cial noise (also known as nugget) to avoid instability at the expense
of a poorer approximation. As discussed later, noise is crucial for convergence
proofs, which indeed require to assume n → ∞ and sub-Gaussian noise (Lemma
1 in [5]).

Related works. In the BO literature, the idea of setting the GP kernel's hyper-
parameters via strategies alternative to common methods like Maximum Likeli-
hood Estimation (MLE) or Maximum A Posteriori (MAP), is not new. However,
they started from a di�erent motivation, that is convergence analysis.

The most widely GP-based BO algorithm is [22], widely quoted for being no

regret.2 However, its theoretical convergence proof holds only in the standard set-
ting [7], in which one assumes a realizable (i.e., well-speci�ed) scenario, meaning
that the objective function is a member of a speci�c Reproducing Kernel Hilbert
Space (RKHS) with bounded norm, known a-priori. In other terms, convergence
to the optimum is proved under the assumption that the GP kernel's hyperpa-

1 Problems in more than 20 dimensions are addressed through High Dimensional
Bayesian Optimization (HDBO) approaches, recently surveyed in [6].

2 Denote with RN =
∑N

i=1

(
f(x(i))− f(x∗)

)
the regret accumulated by an algorithm

generating N solutions. The algorithm has no-regret if limN→∞
RN
N

→ 0.
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rameters are known in advance, that is not the case in practice. Otherwise GP
kernel's hyperparameters must be tuned but, how demonstrated in [8], this leads
no regret algorithms to get stuck into local optima. Heuristic methods [24, 25,
23, 5] have been proposed over time, basically using the Lemma 4 of [8], stating
that decreasing the length-scale hyperparameter of the kernel leads to consider
a larger RKHS, increasing exploration at the expense of a higher regret [17].

As far as instability of the kernel matrix is concerned, [27] proposed a BO
method selecting the next query driven by both the exploration-exploitation
trade-o� and the minimization of the kernel matrix's condition number.

Contributions. We propose a new method for learning a GP model at an
approximately constant time, that is O(1), instead of O(n3), also avoiding the
ill-conditioning of the kernel matrix. Speci�c innovations and contributions are:
(i) a more e�cient outer loop of BO; (ii) avoiding ill-conditioning, so that there
is no need to inject arti�cial noise when the objective function is noise-free;
and (iii) a balance between exploration-exploitation directly through the GP's
predictions (i.e.,avoiding other acquisition functions). Experimental results on a
set of ten diversi�ed test problems empirically show the bene�ts of our method.

2 Background

2.1 GP-based BO

Without loss of generality, we refer to the following global optimization problem:

x∗ ∈ argmin
x∈X⊂Rd

f(x) (1)

with f(x) black-box and expensive to evaluate, and X a box-bounded search
space. In this paper we consider X ≜ [0, 1]d, which any box-bounded domain
can be scaled to.

BO generates a sequence of queries X1:n =
{
x(i)

}
i=1:n

and collects the as-

sociated observations y1:n =
{
y(i)

}
i=1:n

, with y(i) = f
(
x(i)

)
+ ε(i) in the case

that f(x) is noisy. Usually, it is assumed ε(i) ∼ N (0, λ2).
The next query x(n+1) is obtained by optimizing an acquisition function,

balancing between exploration and exploitation. We consider the well-known
and widely used Lower Con�dence Bound (LCB) [22], leading to:

x(n+1) ∈ argmin
x∈X

µ(x)− β
1
2σ(x) (2)

where µ(x) is the prediction for f(x) provided by the GP trained on (X1:n,y1:n),
the term σ(x) is the uncertainty associated to the prediction, and β regulates
the uncertainty bonus: higher values incentive exploration, small values increase
exploitation. We speci�cally discuss about the scheduling of β in the next.
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The equations for the GP's predictive (also known as posterior) mean µ(x) and
uncertainty σ(x) are:

µ(x) = m(x) + k(x,X)
[
K+ λ2I

]−1
(y −m (X)) (3)

σ2(x) = k(x,x)− k(x,X)
[
K+ λ2I

]−1
k(X,x) (4)

where m(x) is the prior mean (usually, set to zero), k(x,X) = k(X,x)⊤ is
a vector of kernel-based similarities between x and every other x(i) ∈ X, and
K is an n × n kernel matrix with entries Kij = k

(
x(i),x(j)

)
. Finally, λ2 is the

variance of a zero-mean Gaussian noise if f(x) is noisy and/or additional noise
is injected because K cannot be inverted.

For our analysis, we consider the well-known Squared Exponential (SE) ker-

nel, de�ned as k(x,x′) = e−
∥x−x′∥2

2ℓ2 , with ℓ its length-scale hyperparameter.

2.2 Gaussian Process learning

GP learning consists into tuning the kernel's hyperparameters depending on a
dataset, that in BO is the set of queries (X1:n,y1:n). This is typically done by
maximizing MLE with respect to the kernel's hyperparameters, where:

MLE ≜ −1

2
yT

[
K+ λ2I

]−1
y − 1

2
log |K+ λ2I| − n

2
log 2π (5)

and | · | denotes the determinant. Clearly, only K depends on the kernel's hy-
perparameters (i.e., ℓ in our case), whose value a�ects both the �rst and the
second term of (5). They are, respectively, a matrix inversion and a determinant
computation. The three terms have di�erent roles: only the �rst term involves
the observed function values (i.e., it is associated to the quality of �t), the second
can be interpreted as a complexity penalty depending on the kernel (both kernel
type and hyperpramaters' values), and the third is a normalization constant [26].

Alternatively, MAP can be considered, also known as penalized MLE. The
only di�erence is that the likelihood is weighted with respect to some prior.

Maximization of MLE as well as MAP can be addressed through gradient-
based or derivative free algorithms. In any case, they require to evaluate many
values for the kernel hyperparameters and, consequently, to perform many matrix
inversions and determinant computations, both with complexity O(n3). More-
over, MLE in GP is known to be ill-posed, as also recently analysed in [20].

2.3 Kernel's hyperparameters and exploitation-exploration trade-o�

In GP-based BO with LCB as acquisition function � compactly, GP-LCB � the
scheduling for β is given by (Theorem 2 from [22]):

β = 2 log(n22π2/(3δ)) + 2d log(n2dbr
√
log(4da/δ)) (6)

which provides theoretical guarantee of convergence to the optimum only in the
standard setting (also known as realizable or well-speci�ed scenario). Otherwise,
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tuning the kernel's hyperperameters is needed, leading GP-LCB to get stuck into
local optima [8, 5], despite the (logarithmic) increasing of the uncertainty bonus
(6).

In [5], experiments show that, contrary to GP-LCB, the proposed approach
always converges to the optimum, even if it provides a higher, but eventually
sub-linear, cumulative regret. Indeed, the main idea consists into adapting the
hyperparameters � instead of tuning them via MLE or MAP � to increase explo-
ration at the expense of a larger cumulative regret. This is also the underlying
idea of previous methods, such as the schedules proposed in [23�25] aimed at
iteratively decreasing ℓ. This is in line with Lemma 4 from [8], stating that when
decreasing the length-scale, the resulting function space contains the previous
one, that is we are considering progressively larger RKHSs [5].

In other terms, all these methods aim at increasing the exploration with
respect to that provided by (6) whenever a miss-speci�ed scenario is targeted.
The miss-speci�cation is so common that, reasonably, is the reason why other
recent works on new acquisition functions report that GP-LCB is almost always
outperformed by new methods, such as [2, 3, 16].

Finally, the need for switching to exploration has been also reported in [11, 12]
about human search strategies: when searching for the optimum, subjects move
towards pure random search whenever they perceive that there is a negligible
chance to improve the current best solution. This is in contrast with cumulative
regret, which should be more suitable for tasks aimed at "accumulating scores
over time", instead of searching for the best score overall. Indeed, it is more
related to multi-armed bandit than global optimization. On the other hand,
cumulative regret is the basic concept which convergence proofs of BO algorithms
are currently based on [17].

In [22] it is proved that the cumulative regret of GP-LCB is O(
√

nβ(n)γ(n)),
where the quantity γ(n), also named information capacity [5], is:

γ(n) = max
X1:n∈X

I(y1:n; f) (7)

that is the largest amount of mutual information that can be obtained by any
algorithm from at most n observations. Intriguingly, for GPs the mutual infor-
mation only depends on queries X1:n and not the associated observations y1:n:

I(y1:n; f) ≜
1

2
log |I+ λ−2K| (8)

In the standard setting (also known as realizable or well-speci�ed scenario)
equations (7) and (8) lead to a �nite bound for the the regret, given the schedul-
ing of β in (6). However, in miss-speci�ed scenarios this bound does not hold
any longer.
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Moreover, by rewriting the second term of MLE by using (8) one easily
obtains:

MLE ≜ = −1

2
yT

[
K+ λ2I

]−1
y − 1

2
log

∣∣λ2(λ−2K+ I)
∣∣− n

2
log 2π =

= −1

2
yT

[
K+ λ2I

]−1
y − 1

2
log

(
λ2

∣∣λ−2K+ I
∣∣)− n

2
log 2π =

= −1

2
yT

[
K+ λ2I

]−1
y − 1

2
log(λ2)− 1

2
log |λ−2K− I| − n

2
log 2π =

= −1

2
yT

[
K+ λ2I

]−1
y − 1

2
log(λ2)− I(y1:n; f)−

n

2
log 2π

(9)

Thus, tuning the kernel hyperparameters by maximizing MLE implies the
minimization of the mutual information, leading a GP possibly biased towards
exploitation. Indeed, [15] has proposed a GP-based BO algorithm based with
maximization of mutual information as an acquisition function.

When in the noise-free setting arti�cial noise has to be added to avoid ill-
conditioning of the kernel matrix K, λ is tuned along with the kernel's hyper-
parameters by maximizing (9). As a result, switching from λ = 0 to λ > 0 could
drastically result into a more exploitative GP, along the BO iterations.

3 The proposed approach

Starting from the previous considerations, we propose a new GP-based BO algo-
rithm for the noise-free setting that learns a GP at a constant time and also
avoids ill-conditioning, without the need for injecting noise (i.e., λ = 0, always).

3.1 Looking at a GP depending on the length-scale

First, we report an illustrative one-dimensional example to brie�y recall the role
of ℓ on the predictive mean µ(x) and uncertainty σ(x) of a GP with a SE kernel
(Figure 1). When the length-scale is too small (i.e., ℓ = 0.001, in the example),
µ(x) = m(x) everywhere but at the observations (m(x) = 0, in the example).
Then, µ(x) becomes smoother with ℓ increasing (i.e., ℓ = 0.01 and ℓ = 0.1),
while σ(x) decreases. Predictive uncertainty almost completely disappears for
larger length-scale (ℓ = 1) up to the rising of instabilities (with ℓ = 1.1 µ(x)
becomes jiggling). Finally, higher values (ℓ = 2) bring to ill-conditioning of K,
requiring to inject arti�cial noise. However, as a result this leads, in many cases,
to a poor-approximation of the true function (just like in the example).

Our idea is to estimate an ℓ∗ close to instability, but avoiding jiggling, so that
the resulting µ(x), alone, can suitably balance exploitation and exploration.

Intriguingly, we are moving in the opposite way with respect to Lemma 4
from [8]: we are not interested in considering larger RHKSs at each iteration,
but the smallest possible one for that speci�c iteration. Only in the case that
it could be impossible to estimate ℓ∗, then we automatically select the largest
possible RKHS (i.e., the smallest positive value for ℓ∗). In the next, we explain
how ℓ∗ can be estimated at constant cost, contrary to the O(n3) of MLE.
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Fig. 1. E�ect of the SE kernel length-scale on the GP model.

3.2 Estimating the condition number to �t a GP at a constant time

Denote with k the condition number of K, with instability arising when k be-
comes too large. According to our previous considerations, we want to �nd:

ℓ∗ = max
ℓ∈(0,

√
d]
k

s.t. k−1 > τ
(10)

with τ the numeric precision of the speci�c computational system. Unfortu-
nately, the cost for calculating k is still O(n3), due to the need for computing
the eigenvalues of K. Our idea is to create a model predicting the inverse of k,
speci�cally log10(k−1), for di�erent values of ℓ and depending on D, that is the
n×n matrix with entries Dij = ∥x(i)−x(j)∥. Obviously, Dij = Dji and Dii = 0;

moreover, 0 ≤ Dij ≤
√
d, since we are considering X = [0, 1]d.

To make clear the relation among ℓ, D, and k, remind that by denoting

with ρ the quantity ∥x − x′∥ one can rewrite the SE kernel as k(ρ) = e−
ρ2

2ℓ2 ,
then K = k(D), with the kernel function applied element-wise to D. However,
at each BO iteration the size of D increases, and it is not practical to have a
predictive model for every possible n. Instead, we propose to collapse D into a
vector w ∈ [0, 1]H , with

∑H
h=1 wh = 1 (i.e., w is in the unitary simplex), and:

wh =

{
|{Di>j : 0 ≤ Dij ≤ h

√
d/H}|, if h = 1 ≥ 1

|{Di>j : (h− 1)
√
d/H < Dij ≤ h

√
d/H}|, otherwise

where H = N(N − 1)/2, and N is the maximum number of BO iterations.

With n ∈ {n0, ..., N}, n points are sampled in X , and the associated matrices
D(n) and vectors w(n) are computed, along with k(n). Then, a nonlinear support
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vector regression model Md is trained such that Md(w, n, ℓ) ≃ log10(k−1).

Importantly, Md is generated once but used for any problem in X .
Indeed, Md only depends on data points, not on any associated function values,
because instability is due to too close points in X .

At a generic BO iteration, w(n) is computed from X1:n, and ℓ∗ is obtained
by rewriting (10) as:

ℓ∗ = min
ℓ∈(0,

√
d]
Md(w

(n), n, ℓ)

s.t. Md(w
(n), n, ℓ) > log10(τ)

(11)

If the problem (11) is infeasible, at a certain BO iteration, than ℓ∗ is set to
the smallest positive value, that is ℓ∗ = τ . Figure 2 shows some examples.

Fig. 2. log10(k
−1) predicted through Md (with d = 2), for di�erent ℓ and for �xed w

and n. Three di�erent situations: ℓ∗ =
√
d, ℓ∗ <

√
d, and ℓ∗ = τ (i.e., (11) is infeasible).

4 Experiments

4.1 Test problems

We have selected a set of test problems to easily control and validate the be-
haviour of the proposed method against GP-LCB. Speci�cally, we have selected
5 one-dimensional and 5 two-dimensional well-known test problems from the In-
�nity77 repository3 and the Simon Fraser University's Virtual Library of Sim-

ulation Experiments: Test Functions and Datasets4.
The aim was to de�ne a well diversi�ed set of test problems (depicted in

Figure 3 and Figure 4), in terms of smoothness, location and number of opti-
mizer(s). The search spaces of all the test problems have been preliminary scaled
to [0, 1]d.

3 https://in�nity77.net/global_optimization/test_functions.html
4 https://www.sfu.ca/ ssurjano/
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Fig. 3. One-dimensional test problems: f2, f4, f5, and f6 are from the In�nity77 repos-
itory, while gramacylee is from the Simon Fraser University's repository. The search
spaces of all the problems have been preliminary scaled to [0, 1].

Fig. 4. Two-dimensional test problems, scaled to [0, 1]2. Optimizers are marked in blue.

4.2 Performance metrics

Here, we brie�y describe the performance metrics adopted in our study.

Gap metric is a measure of the e�ectiveness and e�ciency of any sequential
global optimization algorithm. It is de�ned as:

G(n) =
y+(1) − y+(n)

y+(1) − f(x∗)
(12)

with y+(n) the best value after n queries (best seen), that is y+(n) = min
i=1:n

{y(i)}.

Interestingly, G(n) ranges from 0 to 1 and can be therefore used to fairly
compare di�erent algorithms, also on di�erent problems. Charting G(n) with
respect to n ∈ {1, ..., N} leads to the Gap metric curve: the closer and the faster
the Gap goes to 1, the more e�ective and e�cient is the algorithm.

Area Under the Gap metric Curve (AUGC) has been recently used [9] to
quantify, into a unique value, the information of a Gap curve:

AUGC =
N∑

n=1

G(n) (13)

Discrepancy from Uniform distribution is used as a measure of exploration.
It quanti�es how far a data sample (i.e., the queries X1:n) deviates from a per-
fectly uniform distribution. Although many discrepancy measures are available,
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we have decided to use the L2-discrepancy because it has an analytical form:

DL2(X1:n) =

[∫
[0,1]2d

(
A(X1:n; Jab)

n
− V ol(Jab)

)2

da db

]1/2

(14)

where the term A(X1:n, Jab) is the number of queries falling into the subset
Jab ∈ [0, 1]d ≜ [a1, b1)× ...× [ad, bd), with a, b ∈ [0, 1]d.

Time saving is simply computed as the ratio between the wall-clock time of
the proposed MLE-free GP-BO algorithm and GP-LCB. Time saving for GP
learning, optimization of the acquisition function, and total will be reported.

4.3 Experimental settings and results

Experiments are aimed at comparing the proposed MLE-free GP-BO against
GP-LCB. They share the same setting: isotropic SE kernel (with max amplitude
σ2
f = 1), n0 = 5d initial queries randomly sampled via LHS (but ensuring that

∥x(i) − x∗∥ > 0.1,∀i = 1, ..., n0), and N = 40d queries overall.
To mitigate randomness, we performed 100 independent runs: for each run,

the two methods share the same set of n0 randomly sampled queries.
Acquisition functions (i.e., just µ(x) for MLE-free GP-BO) are optimized via

L-BFGS-B with 10 restarts.
Experiments were run on an Intel(R) Core(TM) i7-7700HQ @2.80GHz, 16GB

RAM (Win10 Pro 64bits); R version 4.2.3 (2023-03-15 ucrt) "Shortstop Beagle".

Result 1. In terms of AUGC (Table 1) there is not a clear winner on
the one-dimensional test problems. On the other hand, MLE-free GP-BO shows
signi�cantly higher AUGC values on the two-dimensional problems, meaning
that it is more e�ective and e�cient (i.e., converges closer to the optimum and
in less iterations) than GP-LCB.

Table 1. Area Under the Gap Curve (AUGC)

d Test problem MLE-free BO GP-LCB U test p-value

f2 31.87 (2.85) 30.25 (2.00) <0.001 ***
f4 34.99 (0.02) 34.91 (0.18) <0.001 ***

1 f5 25.96 (7.00) 27.58 (03.83) 0.210
f6 18.04 (9.11) 23.96 (6.43) <0.001 ***
gramacyleesc 13.54 (9.42) 7.69 (6.83) <0.001 ***

braninsc 59.74 (7.67) 39.66 (15.26) <0.001 ***
goldprsc 40.74 (17.68) 23.38 (18.91) <0.001 ***

2 rosenbrocksc 63.53 (4.27) 53.71 (4.20) <0.001 ***
schwefelsc 27.62 (13.82) 8.20 (10.39) <0.001 ***
stybtangsc 64.50 (4.77) 52.71 (4.16) <0.001 ***



92 A. Candelieri and E. Signori

Result 2. The higher AUGC values of MLE-free are motivated by a higher
exploration, that is a signi�cantly lower L2-discrepancy from the Uniform dis-
tribution (Table 2). The lower the L2-discrepancy, the higher the exploration.

Table 2. Discrepancy from Uniform distribution

d Test problem MLE-free BO GP-LCB U test p-value

f2 0.04936 (0.01525) 0.21768 (0.00639) <0.001 ***
f4 0.05974 (0.01735) 0.28804 (0.00027) <0.001 ***

1 f5 0.04709 (0.01303) 0.16720 (0.01100) <0.001 ***
f6 0.04567 (0.01133) 0.05015 (0.01385) <0.001 ***
gramacyleesc 0.04687 (0.01225) 0.11301 (0.02733) <0.001 ***

braninsc 0.01969 (0.00442) 0.04752 (0.00182) <0.001 ***
goldprsc 0.02115 (0.00605) 0.02599 (0.00196) <0.001 ***

2 rosenbrocksc 0.03342 (0.00676) 0.04021 (0.00199) <0.001 ***
schwefelsc 0.02288 (0.00497) 0.06070 (0.00278) <0.001 ***
stybtangsc 0.02901 (0.00467) 0.05875 (0.00313) <0.001 ***

Result 3. Importantly, the time saving given by MLE-free GP-BO is quite
astonishing (Table 3), especially in the light of the better performances provided
by MLE-free GP-BO against GP-LCB. To provide a more complete overview, we
remark that, on 1D test problems, MLE-free's runtime is, on average, 0.5 seconds,
against 15 seconds for GP-LCB. As far as 2D test problems are concerned, MLE-
free requires a runtime between 3 and 10 seconds, depending on the problem,
against 83 to 190 seconds required by GP-LCB.

Table 3. Wall-clock time ratio: MLE-free BO's runtime / GP-LCB's runtime, sepa-
rately for GP training, acquisition, and overall.

d Test problem GP training Acquisition Overall

f2 6.85% (1.04%) 3.57% (0.90%) 3.83% (0.88%)
f4 6.56% (1.00%) 3.01% (0.52%) 3.36% (0.54%)

1 f5 6.73% (0.92%) 4.17% (1.35%) 4.39% (1.23%)
f6 7.49% (1.06%) 5.48% (1.91%) 5.66% (1.75%)
gramacylee 7.58% (0.71%) 4.37% (0.95%) 4.66% (0.89%)

braninsc 11.46% (0.92%) 5.73% (2.75%) 6.07% (2.59%)
goldprsc 10.57% (0.90%) 10.91% (2.31%) 10.89% (2.19%)

2 rosenbrocksc 11.91% (0.96%) 1.76% (0.44%) 1.97% (0.43%)
schwefelsc 16.13% (1.20%) 4.73% (1.51%) 4.91% (1.49%)
stybtangsc 12.46% (1.21%) 2.18% (0.56%) 2.62% (0.56%)
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Result 4. Finally, we report both the Gap metric curve and the cumulative
regret curve of the two methods, for the one-dimensional test cases (Figure 5)
and the two dimensional ones (Figure 6), separately.

As far as the one-dimensional test cases are concerned, MLE-free GP-BO
always shows a higher cumulative regret due to a larger exploration implied by
the need to avoid instability and ill-conditioning. On the other hand, as already
discussed, this allows MLE-free GP-BO to achieve a signi�cantly larger AUGC
on three out of the �ve test cases (i.e., f2, f4, and gramacyleesc).

As far as the two-dimensional test cases are concerned, cumulative regret of
MLE-free GP-BO is usually lower than GP-LCB's one. It just increases after
the Gap Metric achieves one, meaning that MLE-free GP-BO is just exploring
because there is no chance to improve further. Finally, AUGC for MLE-free
GP-BO is always signi�cantly larger than GP-LCB's one.

Fig. 5. Gap metric curves (top) and cumulative regret (bottom) for MLE-free GP-BO
and GP-LCB on �ve d = 1 test problems (mean and standard deviation on 100 runs).

Fig. 6. Gap metric curves (top) and cumulative regret (bottom) for MLE-free GP-BO
and GP-LCB on �ve d = 2 test problems (mean and standard deviation on 100 runs).

5 Conclusions

The proposed MLE-free GP-BO algorithm proved to be more e�ective and e�-
cient than the well-known GP-LCB. Indeed, the MLE-free GP-BO converges to
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solutions closer to the optimum than GP-LCB (i.e., signi�cantly higher AUGC
values). Moreover, the higher e�ciency is not only re�ected into a lower num-
ber of queries but, more important, also into the computational costs, with a
runtime that is, on average, 5% that required by GP-LCB.

Since we have not assumed to work in the (impractical) realizable setting,
convergence of GP-LCB is not guaranteed, as empirically demonstrated by the
cumulative regret observed in our experiments. Importantly, MLE-free GP-BO
has shown a lower cumulative regret than GP-LCB until the Gap Metric can
be improved. Otherwise, it increases due to the over exploration triggered by
the impossibility to further improve, close to the current best solution, without
incurring into ill-conditioning. As an important consequence, MLE-free GP-BO
is not only a more e�ective and e�cient BO algorithm; it represents a novel
framework in which GP learning and exploration-exploitation trade-o� are si-
multaneously addressed by tuning of the GP kernel's hyperparameters.

Moreover, since the GP model is now learned at a constant time, that is
O(1) instead on O(n3), the power of look-ahead acquisition functions can be now
disclosed. Indeed, they are known to be ine�cient due to the need for retraining
many temporary GPs, at each BO iteration, given a set of hallucinations (also
known as fantasies) from the current GP model. Thanks to our approach, this
process can be now performed with a really cheap computational cost.

Although limited to one-dimensional and two-dimensional test problems, re-
sults are promising and justify further investigation with respect to at least the
three following directions: (i) high-dimensional search spaces, (ii) anisotropic
kernels, and (iii) theoretical convergence proof (not necessarily based on regret).

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. The trade-o� between gaining revenue through accepting a
random incoming request and its scheduling against a higher potential
revenue in the future needs sophisticated deliberations and decision-
making. To gain deeper insights and to examine such decisions under
uncertainty, request acceptance and scheduling should be made simul-
taneously. This paper introduces the Dynamic Request Acceptance and

Unsplittable Scheduling Problem (DRAUSP), where we consider a single
resource with a given capacity across multiple time slots. In each decision
period of a �nite time horizon, a single request arrives, and the objective
is to either accept or reject the request and, if accepted, simultaneously
schedule it onto available time slots without exceeding the capacity to
maximize revenue. We formulate the DRAUSP as a Markov Decision

Process and present a Stochastic Dynamic Programming algorithm to
solve it optimally. In addition, we introduce a Dimension Compression

algorithm to compute upper and lower bounds. In our experiments, we
demonstrate the e�ectiveness of these bounds and also show that simple
heuristics, such as a First Come First Serve heuristic, are not su�cient
to cope with the complexity of the DRAUSP. Therefore, more sophis-
ticated heuristics become necessary, since well-planned acceptance and
scheduling decisions are essential for revenue maximization.

Keywords: Dynamic Optimization · Request Acceptance and Schedul-
ing · Revenue Maximization · Stochastic Dynamic Programming.

1 Introduction

A central task of revenue management is to manage the trade-o� between re-
ceiving immediate revenue for selling a �xed and perishable capacity or prod-
uct against a higher potential revenue in the future [21]. However, determining
revenue-maximizing policies is particularly challenging in complex and competi-
tive environments, where disruptions, unforeseen events, and other uncertainties
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make predicting the required capacity di�cult. Airlines and hotels, for exam-
ple, often face sudden diverse incoming requests, forcing them to make decisions
about accepting or rejecting such requests on short notice to maximize their rev-
enue (see [8]). In addition, such decisions may also a�ect subsequent scheduling
tasks. Scheduling problems arise when scarce resources must be allocated to a set
of tasks while optimizing some objective, and are widespread across industries
[13].

In this paper, we study the Dynamic Request Acceptance and Unsplittable

Scheduling Problem (DRAUSP), where the task is to schedule accepted requests
onto the limited capacity of a single resource across di�erent time slots. For
this problem, we distinguish between an upfront decision horizon, during which
Td ∈ N>0 requests arrive successively, and a subsequent service period, where the
accepted requests get ful�lled. The service period is divided into K ∈ N>0 dis-
crete time slots, each with a capacity Ck ∈ N>0, where k = 1, ...,K. Each request
is de�ned by a tuple [r, q], where r represents a positive revenue yielded upon ac-
ceptance, and q = (q1, ..., qlen(q)) ∈ {0, 1, ..., Ck}len(q) is a discrete, non-negative
vector with length len(q) ∈ {1, 2, ...,K} representing the demanded capacity per
time slot. Upon acceptance, requests must be scheduled onto the di�erent time
slots such that all accepted requests can be ful�lled non-preemptively during the
service period without exceeding the capacity Ck of any time slot k. Depending
on the available capacity and the length of a request len(q), there are up to
K − len(q) + 1 possibilities to schedule the request. At each of the Td periods of
the decision horizon, a single request is independently and identically drawn from
a stationary distribution over a �nite set of possible requests N . The decision to
accept or decline the current request, along with its scheduling if accepted, must
be made immediately, i.e., before the next request arrives. The objective of the
DRAUSP is to maximize the total revenue over the decision horizon.

Figure 1 shows an example withK = 6 time slots and a capacity of Ck = 5 for
these time slots k = 1, ...,K. In the current time step of the decision horizon, a
request with a certain revenue r and a demand vector q = (1, 2, 2, 1) arrives, and
we have to decide whether to accept this request and, if so, on which time slots
to schedule it. Since several requests have already been accepted in this example
we cannot schedule this request to time slots [1; 4] due to insu�cient capacity,
while possible time slots are [2; 5] and [3; 6]. In this example, we decide to accept
the request and schedule it into time slots [3; 6]. However, the request arriving
in the next time step of the decision horizon with demand vector q = (2, 1, 1)
cannot be accepted, as it would exceed the capacity.

The DRAUSP has practical applications including job acceptance and schedul-
ing decisions on high-performance computing clusters, where jobs might be non-
preemptive and may have di�erent demand pro�les over time. However, de�ning
and describing the problem alone is not su�cient for practical use; we also need
to develop solution approaches. Consequently, we present a Stochastic Dynamic
Programming (SDP) algorithm to solve the DRAUSP optimally. In addition,
we introduce a Dimension Compression algorithm to compute lower and upper
bounds on the optimal solution.



98 Caspar et al.

1 2 3 4 5 6

1

2

3

4

5

1 2 3 4 5 6

1

2

3

4

5

time slots time slots

us
ed

 c
ap

ac
ity

us
ed

 c
ap

ac
ity

rejectedaccepted

scheduling

next 
period

next 
period

next 
period

Fig. 1. An illustration of the DRAUSP with K = 6 time slots and an initial capacity
of Ck = 5 for these time slots k = 1, ...,K. The �rst request with q = (1, 2, 2, 1) gets
accepted and scheduled onto time slots [3; 6] (time slots [2; 5] would also be possible,
while [1; 4] is not possible). The following request in the next decision period with
q = (2, 1, 1) cannot be accepted due to insu�cient capacity.

The remainder of this paper is structured as follows. Section 2 interlinks the
DRAUSP with the relevant literature and distinguishes it from similar problems.
In Section 3, we formalize the problem as a Markov Decision Process (MDP).
Afterward, we present an SDP algorithm for solving the DRAUSP optimally and
demonstrate how to obtain lower and upper bounds using a DC algorithm in
Section 4. Section 5 provides detailed results of our computational experiments,
which we conducted to analyze the tightness of the DC bounds and to compare
our SDP with a First Come First Serve (FCFS) heuristic. Finally, we conclude
this work and discuss future research implications in Section 6.

2 Related Literature

Request acceptance decisions under uncertainty have already been addressed
in the revenue management literature, particularly in the context of Airline
Revenue Management (ARM). Numerous papers, such as [6, 18, 3], consider re-
quest acceptance decisions within ARM, incorporating elements like di�erent
fare classes, random cancellations, and overbooking. These studies utilize Re-

inforcement Learning (RL) to obtain approximate solutions. Similar problems
can also be found in Cargo Revenue Management. Seo et al. [17], for example,
investigate request acceptance decisions of ad-hoc and contractual containers in
a sea cargo revenue management environment, using SDP and RL to solve the
problem.

Schwind and Wendt [16] study the less constrained problem of maximizing
revenue by accepting or rejecting stochastic requests that arrive dynamically
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during an upfront decision horizon, subject to the capacity constraints of one
or more resources. To solve this problem, they introduced an RL algorithm
and benchmarked its performance against optimal solutions obtained by SDP.
The latter problem is closely related to the Dynamic and Stochastic Knapsack

Problem with Deadlines [12] that belongs to the class of Dynamic and Stochastic
Knapsack Problems (DSKP) (see [9] and references therein), where a capacitated
knapsack is given, and items arrive sequentially as value-size pairs. Each item
must either be irrevocably accepted or rejected to maximize the total value
of items without exceeding the knapsack's capacity. Yang et al. [24] consider
a multidimensional knapsack with the objective of maximizing the total value
while respecting the capacities of the di�erent dimensions, and introduce two
online algorithms using reservation functions to solve this problem.

While all of the papers mentioned so far study request acceptance decisions,
they do not incorporate scheduling considerations. In contrast, the class of On-
line Scheduling Problems (OSP) addresses scheduling decisions without the prior
step of accepting or rejecting requests (see [14]). The Stochastic Resource Con-

strained Project Scheduling Problem (SRCPSP) belongs to this OSP class, where
a set of jobs with random processing times, precedence constraints, and di�er-
ent resource consumption requirements is scheduled across multiple resources,
minimizing a project cost function or the project makespan. Stork [20] employs
di�erent scheduling policies and various branch-and-bound algorithms to solve
the SRCPSP.

The Unsplittable Flow Problem (UFP) is a unifying framework for a variety of
scheduling and load-balancing problems such as the Interval Scheduling Problem
[10], Storage Allocation Problem [11] and the Geometric Strip Packing Problem

[5], that is closely related to the DRAUSP. In the UFP with bag constraints [4],
there is a resource with a capacity varying over time and a set of jobs. Each
job is speci�ed by a certain demand that is constant over time, a pro�t, and a
set of job instances. The job instances de�ne di�erent possible time intervals for
each job, and the objective of the UFP with bag constraints is to select at most
one job instance for each job such that the pro�t is maximized. In contrast to
the o�ine case, literature covering online algorithms for UFP scheduling, to the
best of our knowledge, is limited to special variants (see, e.g., [7]), and even for
those, competitive analysis does not yield promising bounds.

A research stream that deals with request acceptance and scheduling deci-
sions under uncertainty in the context of manufacturing is the Stochastic Or-

der Acceptance and Scheduling Problem (SOASP) [19]. In the SOASP, decisions
about which orders to accept for processing and how to schedule them on ma-
chines must be made jointly and in real time. Usually, in such SOASPs, accepted
orders must be scheduled according to their processing times and due dates and
are not subject to capacity restrictions as in the DRAUSP. Xu et al. [23] present
a SOASP with sequence-dependent setup times and stochastic orders with �xed
revenues for certain order types. The authors formulate the problem as an MDP
and develop an order acceptance rule based on opportunity costs, which is com-
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pared to a First Come First Accept heuristic and the optimal solutions of the
corresponding deterministic problems with full information.

Finally, there are several related streams of research in the class of Online
Allocation Problems (OAP), where real-time decisions about the allocation of
accepted requests subject to resource constraints must be made (see [1] for re-
lated OAP literature) and therefore our DRAUSP can also be included in this
problem class. Balseiro et al. [1] studied a generic OAP with resource constraints
where resource consumption can be allocated to resources as required, which is
not a fact for the DRAUSP. They present a numerical study for an online lin-
ear program with stochastic inputs where action vectors control the allocation
of di�erent resources. The authors propose a dual mirror descent algorithm to
solve the OAP and compare the results with the hindsight optimum.

The DRAUSP with request acceptance and scheduling decisions under uncer-
tainty is closely related to di�erent problem categories such as ARM problems,
DSKPs, OSPs, UFPs, SOASPs, and OAPs. However, to the best of our knowl-
edge, no literature treats such request acceptance decisions of incoming requests
with stochastic demand and revenue over a �nite time horizon and simultaneous
unsplittable scheduling on a resource over di�erent time slots to maximize the
aggregate revenue. Thus, we address this research gap with the DRAUSP and
provide an MDP formulation in the following section.

3 Markov Decision Process

Recall that in the DRAUSP, Td ∈ N>0 requests, independently and identically
drawn from a stationary distribution over a �nite set of possible requests N ,
arrive sequentially over a �nite time horizon. Each request [r, q] must either be
accepted or rejected and, if accepted, non-preemptively scheduled onto K ∈ N>0

di�erent time slots with capacities Ck ∈ N>0, where k = 1, ...,K. In this section,
we introduce an MDP model for the DRAUSP. To this end, we de�ne T =
{0, ..., Td} as the time horizon for the MDP. Besides that, an MDP consists of a
set of states, a set of actions, a reward function, and the state transitions [15].
We de�ne these elements in the following paragraphs.

States: The state space S = {0, 1, ..., C1} × ...× {0, 1, ..., CK} consists of all
possible combinations of remaining capacities. We use st ∈ S to represent the
state in period t, where t ∈ {Td, ..., 0} is the down-counting index of periods
indicating the number of remaining requests. Furthermore, we de�ne the initial
state sTd

= (C1, ..., CK), where all time slots have their initial capacity Ck, and
the terminal state s0, where no more requests arrive. Finally, we use cap ∈ S to
refer to the currently available capacity, i.e., st = cap.

Actions:Within each decision period t ∈ T \{0}, a random request [r, q] ∈ N
arrives in the current state st and determines the actual action space A[r,q]. This
set A[r,q] contains actions represented by tuples a = [ar, aq] consisting of a rev-
enue ar ∈ {0, r}, which is obtained when the action is chosen, and a vector aq ∈
Qa of length K, which speci�es the required demand for all K time slots. The set
Qa = {⃗0, (q1, ..., qlen(q), 0, ..., 0), (0, q1, ..., qlen(q), 0, ..., 0), ..., (0, ..., 0, q1, ..., qlen(q))}



Stochastic Dynamic Programming for the DRAUSP 101

with |Qa| = K− len(q)+2 results from scheduling the demand vector q onto all
possible time slots. Qa also includes 0⃗ to represent the reject action a = [0, 0⃗],
which yields no revenue and demands no capacity. Finally, we use A to denote
the set of action spaces A[r,q] for all requests [r, q] ∈ N , i.e., A =

⋃
[r,q]∈N A[r,q].

Transitions: Between two states st and st−1 with t ∈ T \ {0} a transition
occurs, which depends on the selected action a = [ar, aq] ∈ A[r,q]. However, we
only consider actions that do not exceed the capacity, i.e., actions for which
cap − aq ≥ 0 holds since we do not allow overbooking. For all valid actions,

including the reject action [0, 0⃗], the state transition principle for the DRAUSP
becomes st−1 = cap− aq. Reaching the terminal state s0 signi�es the end of the
decision process, as no further requests arrive and no more transitions occur.

Rewards: Transitioning to the next state by choosing an action a = [ar, aq]
yields the reward ar in state st, where t ∈ T \ {0}. The reward is thus de�ned
by the reward function R(st, a) = ar.

Policy: A policy π(st) : S −→ A[r,q] is a function indicating which action to
take in each state. In the DRAUSP, the objective is to �nd the optimal policy, i.e.,
the policy giving us the optimal action in each state to maximize the cumulative
reward over the time horizon T . Thus, the objective function of the DRAUSP
becomes:

max
π(st)

E

 ∑
t∈T\{0}

R(st, π(st))

 (1)

Value function: The value function Vt(cap) can be used to calculate the
expected objective function value when starting in state cap ∈ S at time step
t ∈ T and choosing the best action until the terminal state s0 is reached at
t = 0. Given that Pr([r, q]) represents the probability that the request [r, q] ∈ N
arrives in period t, the calculation of Vt(cap) can be expressed as:

Vt(cap) =


−∞ ∀cap /∈ (R+

0 )
K , t ∈ T

0 ∀cap ∈ (R+
0 )

K , t = 0∑
[r,q]∈N

Pr([r, q]) max
[ar,aq ]∈A[r,q]

{ar + Vt−1(cap− aq)} else
(2)

4 Solution Methods for the DRAUSP

4.1 Stochastic Dynamic Programming

One method to solve the value function of the DRAUSP presented in Section
3 is SDP. In this section, we present a forward recursion SDP algorithm, which
has the advantage that we only need to compute the values of states that are
actually needed, i.e., we do not compute the values for the complete state space.

The function recursive_sdp in Algorithm 2 takes the number of decision
periods Td, the vector of initial capacities cap, and the set of action spaces A
as input. For each decision period t, where t = 1, ..., Td represents the number
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Algorithm 1: Value computation (for Algorithm 2)

1 Function get_value(t, cap,A,Ω):

2 if t = 0 then

3 return 0

4 end

5 if Ω contains [t, cap] then
6 return Ω[t, cap]
7 end

8 value ← 0
9 foreach A[r,q] ∈ A do

10 best_action_value ← −∞
11 foreach [ar, aq] ∈ A[r,q] do

12 new_state ← cap− aq

13 if new_state is valid then

14 action_value ← ar + get_value(t− 1, new_state, A,Ω)
15 end

16 else

17 action_value ← −∞
18 end

19 if action_value > best_action_value then

20 best_action_value ← action_value
21 end

22 end

23 value ← value + best_action_value

24 end

25 Ω[t, cap]← value/|A|
26 return value/|A|

of remaining requests, we compute the optimal expected value V ⋆
t for the ini-

tial capacity cap when there are t incoming requests remaining by calling the
function get_value. Throughout the computation, we utilize a hashmap Ω to
memoize computed values. Finally, the function returns V ⋆

Td
, which is the opti-

mal expected value obtainable when starting with the initial capacity cap and
facing Td requests.

Within the get_value function in Algorithm 1, we select the best action for
each request in the current state by recursively calling the get_value function
and update the expected value according to equation (2), assuming a discrete
uniform distribution, where each request is equally likely to arrive in a period.

When using a thread-safe hashmap, this algorithm can be accelerated by
parallelizing the for-each loop over the requests (see line 9 of Algorithm 1) within
the get_value function. However, this loop should only be parallelized when
the get_value is called from the recursive_sdp function, i.e., not when the
function get_value is called recursively.



Stochastic Dynamic Programming for the DRAUSP 103

Algorithm 2: Forward recursion stochastic dynamic programming for
the DRAUSP

1 Function recursive_sdp(Td, cap,A):
2 Ω ← ∅ ; // init hashmap

3 for t← 1 to Td do

4 V ⋆
t ← get_value (t, cap, A, Ω) // see Algorithm 1

5 end

6 return V ⋆
Td

4.2 Dimension Compression Algorithm

SDP algorithms, like the one presented in Section 3.1, can quickly become com-
putationally intractable due to the curse of dimensionality [2]. To overcome this
problem, heuristics are frequently used to �nd good, though not necessarily op-
timal, solutions. In this section, we present a Dimension Compression (DC)
algorithm to compute lower and upper bounds for the DRAUSP (see Algorithm
3), which may be used to evaluate the quality of heuristics if the SDP cannot
be solved anymore. The main idea of the DC algorithm is to reduce the number
of time slots K. To be more precise, we halve K and adjust the capacity and
demand vectors accordingly. The reduced problem can then be solved using the
recursive_sdp function.

We start by checking if K is an even number. If not, we take the last element
of the capacity vector cap, append it to cap, and increase K by one. Afterward,
we create two vectors cap and cap of length K/2, which will represent our new
capacity vectors to compute the upper and the lower bound, respectively. To
compute cap, we look at all non-overlapping pairs of consecutive elements in cap
and take the maximum value of each pair multiplied by two. Similarly, we take
the minimum value of each non-overlapping pair of consecutive elements in cap
and add it to cap.

In the next part of the algorithm (see lines 12 - 26 of Algorithm 3), we
compute the compressed demand vectors. We iterate through all pairs of revenues
and demand vectors [ar, aq] ∈ A[r,q] for all A[r,q] ∈ A. If the length of the current
demand vector aq is not even, we will append 0 to aq. Then, we create the vectors
aq and aq of length K/2, representing the new demand vectors for the current
request to compute the upper and lower bound, respectively. Afterwards, we
look at all non-overlapping pairs of consecutive elements in aq. To �ll aq, we
take the sum of the elements of each such pair, and to �ll aq, we take the

maximum element of each pair. We add each aq and aq to the sets A[r,q] and

A[r,q], respectively, and each set A[r,q] and A[r,q] is subsequently added to the

new sets of action spaces A and A, respectively.
Finally, we can compute an upper bound Z by calling the recursive_sdp

function with Td, the updated capacity vector cap, and the new set of action
spaces A. Similarly, we call recursive_sdp with Td, cap, and A to compute a
lower bound Z for the DRAUSP. In the next section, we will evaluate the quality
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Algorithm 3: A dimension compression algorithm for the DRAUSP

1 Function get_bounds(Td, cap,A,K)):

2 init empty sets A and A
3 if K is not even then

4 append capK to cap
5 K ← K + 1

6 end

7 init empty vectors cap and cap of length K/2

8 for k ← 1 to K/2 do
9 capk ← 2 ·max{cap2k−1, cap2k}

10 cap
k
← min{cap2k−1, cap2k}

11 end

12 foreach A[r,q] ∈ A do

13 init empty sets A[r,q] and A[r,q]

14 foreach [ar, aq] ∈ A[r,q] do

15 if len(aq) is not even then

16 append 0 to aq

17 end

18 init empty vectors aq and aq of length K/2

19 for k ← 1 to K/2 do
20 aqk ← aq2k−1 + aq2k

21 aq
k
← max{aq2k−1, aq2k}

22 end

23 add [ar, aq] to A[r,q] and [ar, aq] to A[r,q]

24 end

25 add A[r,q] to A and A[r,q] to A

26 end

27 Z = recursive_sdp(Td, cap,A)
28 Z = recursive_sdp(Td, cap,A)

29 return Z,Z

of these bounds and compare the runtime of the DC algorithm with the SDP
algorithm.

5 Computational Studies

In this section, we evaluate the quality of the bounds returned by the DC al-
gorithm by comparing them with the optimal expected values returned by the
SDP algorithm. In addition, we will assess the e�ectiveness of a simple FCFS
heuristic that successively accepts stochastic incoming requests, if possible, and
schedules them to the �rst possible time slot. Before presenting the results, we
will describe the experimental environment.
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5.1 Experimental Environment

In the revenue management literature, arrivals of requests and their demands
are often assumed to be Poisson distributed [22]. We follow this assumption and
generated each element of the demand vector q of any request [r, q] in the �nite
pool of requests N using a Poisson process:

Pr (x) =
e−λpλx

p

x!
∀x = 0, ..., min

1≤k≤K
(Ck).

The parameter λp states the expected demand value in any time slot and also
its variance. Within our experiments, we distinguish between small (λp = 1) and
large (λp = 3) request demands. For each request [r, q], we furthermore generated
the revenue r by taking the quotient of 1 and an integer random number sampled
from a discrete uniform distribution within the interval [1, 1000].

For our experiments, we generated 51 problem instances with the following
parameters: number of time slots K ∈ {4, 8, 12}, number of requests in the
requests pool |N | ∈ {50, 1000}, expected demand value in any time slot λp ∈
{1, 3}, capacity per time slot C ∈ {10, 20}, and the number of incoming requests
Td ∈ {10, 20, 50}. In 21 of those instances, the length of the demand vectors
len(q) is equal to the number of time slots K, which means that the requests do
not have to be scheduled, and we will only examine the accept/reject decisions for
those instances. In the remaining instances, we consider len(q) ∈ {2, 3, 4, 6, 8},
with len(q) < K. The problem instances used in our experiments are available
online (see https://doi.org/10.5281/zenodo.10640203).

We implemented the SDP algorithm and the DC algorithm in C++ and
compiled them with GCC 13.1. To speed up the computation, we parallelized the
SDP algorithm using OpenMP. All experiments were run on a shared compute
cluster equipped with Intel Xeon Gold 6126 processors providing 24 CPU cores
and 375 GB of RAM to each experiment. We enforced a time limit of 48 hours
on each experiment.

5.2 Computational Results

In Table 1, we present the results for the instances where the length of the
requests len(q) is equal to K, i.e., without considering scheduling decisions in
these instances. We can observe that the number of time slotsK and the available
capacity per time slot C are major factors in�uencing the runtime of the SDP
algorithm. For instances with K = 8, the runtime quickly becomes unreasonably
high when λp = 1. However, using demand vectors with higher demands by
increasing λp to 3 reduces the runtime signi�cantly because fewer requests can
be accepted without exceeding the capacity. Despite the 375GB of RAM of our
computing environment, we were not able to solve instances with K = 12, |N | =
1000, and C = 20, as not only the runtime but also the memory requirements
grow exponentially with increasing C.

On average, the DC algorithm returns lower bounds that are within 14% from
the optimal solution obtained by the SDP algorithm in about a tenth of the time.
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Table 1. Numerical results for the DRAUSP instances without the possibility of
scheduling accepted requests.

Instance FCFS DCH SDP ∆F
SDP

Id (K, |N |, λp, C, Td) ZF Z t Z t Z∗ t %

WA1 (4, 50, 1, 10, 10) 3.80 3.87 0.01 s 4.63 0.02 s 4.33 0.15 s 14.0
WA2 (4, 50, 1, 10, 20) 4.85 5.41 0.02 s 6.90 0.03 s 6.43 0.43 s 32.6
WA3 (4, 50, 1, 10, 50) 5.82 7.48 0.06 s 10.08 0.07 s 9.49 1.06 s 63.1
WA4 (4, 50, 1, 20, 10) 4.56 5.02 0.02 s 5.08 0.04 s 5.07 0.90 s 11.2
WA5 (4, 50, 1, 20, 20) 8.23 8.20 0.04 s 9.61 0.09 s 9.23 4.60 s 12.2
WA6 (4, 50, 1, 20, 50) 10.45 12.39 0.08 s 16.05 0.24 s 15.36 18.1 s 47.0
WA7 (4, 1000, 1, 10, 10) 3.81 3.91 0.07 s 4.59 0.12 s 4.35 2.12 s 14.2
WA8 (4, 1000, 1, 10, 20) 4.90 5.53 0.15 s 7.04 0.30 s 6.58 4.23 s 34.3

WB1 (8, 50, 1, 10, 10) 3.46 3.50 0.08 s 4.51 0.93 s 4.08 261 s 18.0
WB2 (8, 50, 1, 10, 20) 4.01 4.54 0.25 s 6.30 3.06 s 5.47 1076 s 36.4
WB3 (8, 50, 1, 10, 50) 4.38 5.83 0.61 s 8.44 9.70 s 7.19 3567 s 64.2
WB4 (8, 50, 3, 10, 10) 1.18 1.55 0.03 s 1.95 0.08 s 1.69 0.07 s 43.2
WB5 (8, 50, 3, 10, 20) 1.27 1.86 0.03 s 2.38 0.17 s 2.08 0.11 s 63.8
WB6 (8, 50, 3, 20, 10) 2.45 2.91 0.22 s 3.57 2.83 s 3.22 33.4 s 31.4
WB7 (8, 50, 3, 20, 20) 2.65 3.60 0.63 s 4.48 8.13 s 4.06 132 s 53.2

WC1 (12, 50, 3, 10, 10) 1.02 1.45 0.02 s 1.83 0.06 s 1.54 0.03 s 51.0
WC2 (12, 50, 3, 10, 20) 1.07 1.65 0.03 s 2.19 0.16 s 1.78 0.07 s 66.4
WC3 (12, 50, 3, 10, 50) 1.12 1.84 0.06 s 2.54 0.37 s 2.13 0.14 s 90.2
WC4 (12, 1000, 3, 10, 10) 1.00 1.38 10.4 s 1.83 364 s 1.53 299 s 53.0
WC5 (12, 1000, 3, 10, 20) 1.05 1.65 22.3 s 2.19 901 s 1.79 855 s 70.5
WC6 (12, 1000, 3, 10, 50) 1.09 1.87 67.3 s 2.59 2393 s 2.17 2236 s 99.1

Average 3.44 4.07 4.88 s 5.18 176 s 4.74 404 s 46.1

The upper bound exceeds the optimal solution by 9% on average. However, as
with SDP, computing the upper bound quickly becomes intractable because,
even though we halve the number of time slots, we double the available capacity
to compute the upper bound. This problem is particularly evident for instances
WC4-WC6, where the runtime to compute the upper bounds even exceeds the
runtime of the SDP algorithm.

Let us de�ne ∆F
SDP as the relative improvement of an SDP solution (Z∗)

compared to an FCFS solution (ZF ) of the same instance. As the number of
incoming requests Td and time slots K increases, while keeping all other param-
eters equal, we see that the value ∆F

SDP becomes larger. The overall average of
∆F

SDP for the instances in Table 1 is 46.1%.

The results of the experiments with len(q) < K, which require accepted re-
quests to be scheduled onto the time slots, are shown in Table 2. We see that,
again, the number of time slots K and the capacity per time slot C have strong
e�ects on the runtime of the SDP algorithm. For example, doubling the number
of time slots K from 4 to 8, without changing the other parameters, results in a
5000-fold increase in runtime for instances SA1 and SB1. The results of instances
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Table 2.Numerical results for the DRAUSP instances with the possibility of scheduling
accepted requests.

Instance FCFS DCH SDP ∆F
SDP

Id (K, len(q), |N |, λp, C, Td) ZF Z t Z t Z∗ t %

SA1 (4, 2, 50, 1, 10, 10) 3.43 5.03 0.03 s 5.08 0.06 s 5.08 0.42 s 48.1
SA2 (4, 2, 50, 1, 10, 20) 3.46 8.21 0.06 s 8.88 0.13 s 8.80 1.21 s 154.3
SA3 (4, 2, 50, 1, 10, 50) 3.48 12.99 0.20 s 13.52 0.42 s 13.44 3.53 s 286.2
SA4 (4, 3, 50, 1, 10, 10) 3.18 3.88 0.01 s 4.75 0.02 s 4.35 0.14 s 36.8
SA5 (4, 3, 50, 1, 10, 20) 3.20 5.07 0.02 s 6.70 0.05 s 5.97 0.29 s 86.6
SA6 (4, 3, 50, 1, 10, 50) 3.21 6.50 0.04 s 8.59 0.09 s 7.80 0.78 s 143.0
SA7 (4, 2, 50, 1, 20, 10) 4.53 5.08 0.05 s 5.08 0.11 s 5.08 1.41 s 12.1
SA8 (4, 2, 50, 1, 20, 20) 6.86 10.14 0.11 s 10.16 0.49 s 10.16 14.4 s 48.1
SA9 (4, 2, 50, 1, 20, 50) 6.86 18.95 0.27 s 20.46 2.01 s 20.38 60.3 s 197.1
SA10 (4, 3, 50, 1, 20, 10) 4.60 5.06 0.02 s 5.08 0.12 s 5.08 0.78 s 10.4
SA11 (4, 3, 50, 1, 20, 20) 6.44 8.16 0.05 s 9.74 0.13 s 9.02 3.37 s 40.1
SA12 (4, 3, 50, 1, 20, 50) 6.61 11.27 0.10 s 14.90 0.31 s 13.43 11.1 s 103.2
SA13 (4, 2, 1000, 1, 10, 10) 3.38 4.88 0.21 s 4.90 0.92 s 4.90 9.43 s 45.0
SA14 (4, 2, 1000, 1, 10, 20) 3.48 8.32 0.50 s 8.88 2.40 s 8.79 22.6 s 152.6

SB1 (8, 2, 50, 1, 10, 10) 3.46 5.08 1.59 s 5.08 10.2 s 5.08 2192 s 46.8
SB2 (8, 2, 50, 1, 10, 20) 3.48 10.14 5.92 s 10.16 103 s 10.16 42830 s 192.0
SB3 (8, 4, 50, 1, 10, 10) 3.17 5.03 0.45 s 5.08 3.87 s 5.08 1019 s 60.3
SB4 (8, 4, 50, 1, 10, 20) 3.18 8.16 1.65 s 8.94 14.0 s 8.76 4321 s 175.5
SB5 (8, 4, 50, 1, 10, 50) 3.18 12.01 3.45 s 12.97 45.1 s 12.60 14008 s 296.2
SB6 (8, 6, 50, 1, 10, 10) 3.09 4.26 0.21 s 4.55 1.30 s 4.44 102 s 43.7
SB7 (8, 6, 50, 1, 10, 20) 3.13 5.68 0.48 s 6.00 3.70 s 5.85 355 s 86.9
SB8 (8, 6, 50, 1, 10, 50) 3.16 7.52 1.41 s 7.55 10.9 s 7.53 1114 s 138.3
SB9 (8, 4, 50, 3, 10, 10) 1.26 3.04 0.33 s 3.73 3.50 s 3.38 685 s 168.3
SB10 (8, 4, 50, 3, 10, 20) 1.34 3.84 0.79 s 4.71 11.2 s 4.28 2126 s 219.4

SC1 (12, 4, 50, 3, 10, 5) 1.22 2.53 11.0 s 2.54 102 s 2.54 3368 s 108.2
SC2 (12, 6, 50, 3, 10, 5) 1.07 2.18 3.21 s 2.48 63 s 2.32 233 s 116.8
SC3 (12, 8, 50, 3, 10, 5) 1.02 1.53 0.94 s 1.98 10.4 s 1.74 5.78 s 70.6
SC4 (12, 8, 50, 3, 10, 10) 1.08 1.89 2.09 s 2.47 54.6 s 2.17 26.8 s 100.9
SC5 (12, 8, 50, 3, 10, 20) 1.14 2.24 5.13 s 2.85 160 s 2.55 72.2 s 123.7
SC6 (12, 8, 50, 3, 10, 50) 1.20 2.67 16.6 s 5.26 450 s 4.13 216 s 244.2

Average 3.26 6.38 1.90 s 7.10 35.1 s 6.83 2427 s 118.5

SB1 and SB2 show that, in some cases, an increasing number of incoming re-
quests Td can also lead to an exponentially increasing runtime. However, with an
increasing length of demand vectors len(q), the runtime decreases signi�cantly,
as there are fewer possibilities to schedule requests with longer demand vectors.
Given our compute resources, we were unable to solve instances with more than
5 incoming requests when K = 12 and len(q) = 4.

On average, the DC algorithm �nds a lower and upper bound in less than
0.08% and 1.5% of the runtime of the SDP algorithm, respectively. The obtained
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lower bound is within 7% of the optimal solution on average, and the upper
bound exceeds it by about 4% on average.

With an average relative improvement ∆F
SDP of over 118.5% for the instances

with len(q) < K (see Table 2), the performance of the FCFS heuristic becomes
even worse than for instances with len(q) = K (see Table 1). Again, the per-
formance of the FCFS heuristic is mainly a�ected by the number of incoming
requests Td. However, in contrast to the results in Table 1, an increasing number
of time slots K does not necessarily lead to a higher average ∆F

SDP .
In conclusion, our experiments have shown that the scheduling decisions in

the DRAUSP signi�cantly increase the complexity of the problem. Nevertheless,
the DC algorithm was still capable of �nding good upper and lower bounds,
which can be useful for evaluating the quality of heuristics. Our experiments
have also shown that the FCFS heuristic is not su�cient to obtain satisfactory
results, especially when acceptance and scheduling decisions are required, and
thus more sophisticated heuristics are needed for the DRAUSP.

6 Conclusion and Future Research

In this paper, we studied the Dynamic Request Acceptance and Unsplittable

Scheduling Problem (DRAUSP). We formulated the DRAUSP as a Markov

Decision Process (MDP) and showed how Stochastic Dynamic Programming

(SDP) can optimally solve this problem (see Algorithm 2). Furthermore, we
contributed a Dimension Compression (DC) algorithm (see Algorithm 3) for
the DRAUSP that provides lower and upper bounds to gauge the optimal solu-
tion of a DRAUSP instance.

Our experiments showed that the DC algorithm provides promising lower
and upper bounds, and the runtime in doing so is relatively short in comparison
to the runtime of the SDP algorithm. However, our experiments also demon-
strated the complexity of the DRAUSP and showed that the FCFS heuristic
leads to poor results. Therefore, future work should examine more sophisticated
heuristic approaches, and since we provided an MDP model for the DRAUSP,
Reinforcement Learning might be a promising direction.
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Abstract. Given a directed graph, we present and experimentally val-
idate new heuristics to �nd good linear orderings of its vertices so to
obtain Feedback Arc Sets which are minimal, i.e. such that none of the
arcs can be reintroduced in the graph without disrupting acyclicity. We
will also show that, in many cases, the newly proposed linear orderings
along with an improved heuristic algorithm to reinsert eliminated arcs,
which has a good polynomial upper bounds, produce, in fact, a minimum
FAS.
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lem · Experimental Analysis

1 Introduction

The Minimum Feedback Set Problems, both in the vertex and in the arc case,
are among the best known NP-complete problems, and are listed in the seminal
paper written by Karp in 1972 [12]. Due to their hard computational nature,
many heuristics and approximation algorithms have been produced over more
than 50 years. In particular, a thorough review of the Minimum Feedback Arc Set
problem (MFAS), which also includes a description of the special cases for which
we do have a polynomial time algorithm, such as for instance planar graphs [14],
can be found in the recent monography [13].

The problem can simply be de�ned as follows: given a directed graph G =
(V,A), �nd the smallest possible subset of its set of arcs, i.e. a subset F ⊆ A,
whose removal from G makes the graph acyclic. There are di�erent ways to
try to tackle the MFAS problem. Following the equivalent Linear Arrangement
formulation, one can try to �nd a good ordering of the vertices, among the |V |!
possible orderings, such that the number of forward (respectively backward)
arcs, i.e. arcs directed from left to right (respectively right to left) with respect
to the given ordering, is minimum. Clearly, both the set of forward arcs and the
set of backward arcs are a Feedback Arc Set, which in turn implies that any

minimum Feedback Arc Set has size at most |A|
2 (see also [3]). Such an approach

was followed quite successfully in [9], where the authors developed a linear time
algorithm to �nd a good ordering so to put all backward arcs in the Feedback
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Arc Set. Di�erent approaches could be used for speci�c types of graphs. For
sparse graphs, for instance, one can try to enumerate all the simple cycles and
remove them, see the recent papers [2] and [10].

Here, we want to extend the work in [4] and introduce a new heuristic to
�nd good linear arrangements of the set of vertices of the graph. Our main goal
is to produce, in polynomial time, feedback arc sets which are minimal and, at
the same time, prove that on a set of given benchmarks, they actually produce
a minimum feedback arc set.

2 Linear orderings and minimal feedback arc sets

Let us brie�y describe the general approach of producing a minimal Feedback
Arc Set (minFAS) using a linear ordering of the vertices. We recall that a minimal
FAS (minFAS) is a feedback arc set which veri�es the property that none of its
arcs can be reintroduced into the graph without disrupting acyclicity.

First, we recall that given a directed graph G = (V,A) with |V | = n and
|A| = m the vertices which participate in any cycle belong to the same Strongly
Connected Component (SCC) ofG. Therefore, we can concentrate just on �nding
a minFAS for the SCC's of G and the union of the found minFAS's will be a
minFAS for the entire graph.

Thus, let us work on Strongly Connected Graphs. Given a linear ordering
L = (v1, v2, . . . , vn) of the set of vertices V of a directed strongly connected
graph G = (V,A), we can produce 4 di�erent Feedback Arc Sets as follows:

1. Eliminate all the forward arcs, i.e. all the arcs of type (vi, vj) with j > i. We
denote the obtained FAS with F0.

2. Eliminate all the backward arcs, i.e. all the arcs of type (vi, vj) with i > j.
We denote the obtained FAS with B0.

3. Following the list L, eliminate, vertex by vertex, all the forward arcs, i.e. all
the arcs of type (vi, vj) with j > i, but checking after every vertex vi if the
graph has become acyclic. We denote the obtained FAS with F1.

4. Following the list L, eliminate vertex by vertex, all the backward arcs, i.e.
all the arcs of type (vi, vj) with i > j, but checking after every vertex vi if
the graph has become acyclic. We denote the obtained FAS with B1.

Clearly, F1 ⊆ F0 and B1 ⊆ B0. Moreover, if L is the linear order which will
give us a minimum FAS, it will either be F1 = F0 or B1 = B0. The computational
cost of �nding B0 and F0 is linear in the size of the graph, i.e. O(|V | + |A|),
since for each vertex we can simply go through its adjacency list and search for
all the vertices which follow (or precede) in the given ordering L.

If we want to �nd B1 or F1 the computational cost is higher. In particular,
since acyclicity can be tested in O(|V |+ |A|), an upper bound for the overall cost
in such cases is O(|V |(|V | + |A|)). Such an asymptotic extra cost is amortized
by the fact that, in general, we may stop much earlier in the search of a FAS.
The pseudo-codes in Algorithms 1 and 2 show how the two feedback arc sets F1

and B1 are produced.



E�cient vertex linear orderings to �nd minimal Feedback Arc Sets (minFAS) 111

There are two simple in place optimization procedures applied by the two
Algorithms: MLF (L) and MLB(L). Starting at the �rst element of the list L
(index 0 following the standard C or Python notation) they modify in place the
input list L as follows: for i = 0, . . . , |L| − 1

MLF (L) if there is an arc from (L[i+1], L[i]) but no arc (L[i], L[i+1]) then it
swaps L[i] and L[i+1]. As a consequence of the swapping of the two values,
there is one less backward arc.

MLB(L) if there is an arc from (L[i], L[i+1]) but no arc (L[i+1], L[i]) then it
swaps L[i] and L[i+1]. As a consequence of the swapping of the two values,
there is one less forward arc.

Algorithm 1: RFA

Inputs : Directed strongly
connected graph
G = (V,A), ordered
list of vertices L

Output: Ordered list F1 ⊆ A,
FAS for G

1 F1 = []
2 MLF (L)
3 for i = 1 to |L| do
4 for j = i+ 1 to |L| do
5 if (L[i], L[j]) ∈ A then

6 add (L[i], L[j]) to F1

7 remove it from A

8 end

9 end

10 if G is acyclic then

11 exit
12 end

13 end

14 return F1

Algorithm 2: RBA

Inputs : Directed strongly
connected graph
G = (V,A), ordered
list of vertices L

Output: Ordered list B1 ⊆ A,
FAS for G

1 B1 = []
2 MLB(L)
3 for i = 1 to |L| do
4 for j = i+ 1 to |L| do
5 if (L[j], L[i]) ∈ A then

6 add (L[j], L[i]) to B1

7 remove it from A

8 end

9 end

10 if G is acyclic then

11 exit
12 end

13 end

14 return B1

3 Producing a minimal FAS

Given an acyclic directed graph G = (V,A), let us suppose that by using either
the algorithm RFA or RBA we have now a set of arcs F which is a FAS for G,
i.e. the graph G′ = (V,A \ F ) is acyclic. Now, we want to try to add to G′ as
many arcs as possible from F, so that the remaining set F ′ will be a minimal
FAS. The simplest way is to go through the arcs in F and, one by one, add them
to the graph. If, after adding one arc, the graph is no longer acyclic, we remove
it again. Every arc needs to be tested only once, since the insertion of other arcs
will not change the fact that the arc introduces a cycle. Finally, since F ⊂ A
and, as a consequence, |F | < |A|, the overall cost of such a simple approach is
O(|A|(|V |+ |A|)).
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A di�erent approach to the problem of adding arcs from F into the graph
G and, as a result minimizing a given set of arcs that were removed from the
graph to make it acyclic, can be obtained using topological sorting. Given an
acyclic graph we can topologically sort the set of its vertices and add back to
the graph all the arcs in F which are forward arcs, i.e. which follow the order
of the topological sorting. Such an approach is quite fast, since its overall time
complexity once we have computed the topological sorting of the vertices, is
O(|F |), however there is no guarantee that the obtained FAS is minimal.

If F is a FAS obtained by removing forward or backward arcs, such as the
outputs of Algorithms 1 and 2, we do know that the arcs in F follow the order in
which they were eliminated, until the graph became acyclic. Thus, it is obvious
that when trying to reinsert arcs it is more convenient to try to reinsert the
�rst ones that were eliminated not the last ones. So, we will now describe an
algorithm which is quite e�ective, by using such a property of F and still using,
when possible, the topological sort of the vertices. Experimentally, we saw that
the way to add back as many arcs as possible is to avoid to reinsert all the arscs
from a vertex, but, instead, try to reinsert arcs from as many vertices as possible.

More in details, we will go through the list F in many rounds, but at round i,
if previously h arcs had been added to the graph, we go from the arc in position
i to the arc in position i+ h.

Such a heuristic for adding arcs, which we call minimizeFAS and which
improves the heuristic to minimize the FAS presented in [4], is formally de-
scribed in Algorithm 3. It ensures that no more than half of the arcs related
to a speci�c vertex can be added at any round, and, experimentally, it has
given us excellent results. Algorithm 3 is shown using Python 3 code. The
way Python handles deletion in lists, guarantees what above described. We re-
call, for clarity, that the Python function nx.topological_sort(G) computes the
topological sort of the list of vertices of an acyclic graph, while the function
nx.is_directed_acyclic_graph(G) checks if a graph is acyclic.

Let us now study the computational complexity of minimizeFAS. Although
it is done in more rounds, each arc of F is tested only once. So, considering that
the cost of checking acyclicity is O(|V | + |E|) as well as the cost of computing
the topological sort of the vertices, the overall complexity is O(|F |(|V |+ |E|)) =
O(|E|(|V |+ |E|)).

Putting it all together, we have an overall heuristic algorithm shown in Al-
gorithm 4 to produce a minimal feedback arc set given a strongly connected
directed graph and given a linear ordering of its vertices, which extends and
improve, as we will see experimentally, the heuristic algorithm presented in [4].

3.1 From linear orderings to minimal FAS

Given a directed graph G = (V,E) which has more than one strongly connected
component (with at least 2 vertices), and given s criteria to order the vertices of
each component, we then apply the general Algorithm described in pseudo-code
Algorithm 5. Simply put, given a directed graph G and s ordering criteria, for
each strongly connected component, the algorithm OminFAS �nds a minimal
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Algorithm 3: Algorithm minimizeFAS

Inputs : Acyclic graph G = (V,E), list of arcs F , not in G
Output: Sublist of F , which is a minimal Feedback Arc Set for graph G.
ad=1, ad1=0, tested =[]

ts=list(nx.topological_sort(G)) *ts=topological sort

of the vertices of G

while ad==1 :

for e in F:

if e not in tested :

if ts.index(e[0]) < ts.index(e[1]):

G.add_edge(*e)

F.remove(e)

ad1=1

else:

G.add_edge(*e)

if nx.is_directed_acyclic_graph(G):

F.remove(e)

ad1=1

ts=list(nx.topological_sort(G))

else:

G.remove_edge(*e)

tested.append(e)

ad=ad1

ad1=0

return F

Algorithm 4: Algorithm minFAS

Inputs : Strongly connected graph G = (V,E), permutation L of V
Output: Subset F of E, which is a minimal Feedback Arc Set for graph G.

1 F = RFE(G,L)
2 G′ = (V,E \ F )
3 minF = minimizeFAS(G′, F )
4 B = RBE(G,L)
5 G′ = (V,E \B)
6 minB = minimizeFAS(G′, B)
7 if |minF | ≤ |minB| then
8 return minF
9 else

10 return minB
11 end
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FAS for each obtained linear ordering, and it chooses, for the component, the
minimum among all the found minimal FAS. Finally, it returns the union of all
the found minimal FAS.

Algorithm 5: Algorithm OminFAS

Inputs : Directed graph G = (V,E), c1, . . . , cs ordering criteria
Output: Subset F of E, which is a minimal Feedback Arc Set for graph G.

1 Compute the Strongly Connected Components of G :
C1 = (V1, E1), C2 = (V 2, E2), . . . Ck = (Vk, Ek)

2 for i = 1 to k do

3 for j = 1 to s do
4 Compute Li,j , linear order of Vi using criterion cj
5 FAS(i, j) = minFAS(Ci, Li,j)

6 end

7 FAS(i) = minimum(FAS(i, 1), . . . , FAS(i, s))

8 end

9 return
⋃k

i=1
FAS(i)

Algorithm OminFAS depends heavily upon the linear orderings which are
used. As we already remarked in Section 2, if we have a minimum FAS F for a
given graph G, after the removal of the arcs in F, the obtained graph G′ is acyclic
and therefore we can topologically sort its vertices. The obtained ordering Lts is
such that all the arcs in G′ go from left to right in it. Thus, given Lts Algorithm
OminFAS will return in output exactly the minimum FAS F. It follows that we
need to �nd some good and e�cient heuristics to produce linear orderings which
could be as close as possible to the optimal one.

4 Heuristics for linear orderings

Let G = (V,E) be a strongly connected graph. In our approach in [4], we or-
dered the vertices using the 2 simplest and most intuitive criteria: out-degree
of a vertex, in-degree of a vertex. In turn, we obtained 4 di�erent orderings:
decreasing out-degree (do), increasing out-degree (io), decreasing in-degree (di),
increasing in-degree (ii) and for each ordering, we produced 2 di�erent FAS, one
eliminating forward arcs and the other eliminating backward arcs. The initial
asymptotic cost of ordering the vertices is O(|V | log |V |). If the graph is not
sparse, and so |A| ∼ |V |2 such an extra cost is absorbed into the O(|V | + |A|)
cost of computing all the in-degrees and out-degrees of the vertices. The obtained
results were compared to the results obtained in [9] and also in [11], where the
authors propose a O(|V ||E|4)�heuristic and by empirical validation they achieve
an approximation rate of r ≤ 2 with r ≈ 1.3606 being a lower bound for the
APX�hardness.

As noted, the algorithm OFAS presented in [4] represented a good balance
between the ability to reach good minimal values (often minimum) and the
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possibility of application to problems of high dimensions, like the ones described
in [16]. Moreover, the algorithm was clearly performing a lot better when dealing
with scale free graphs and, in turn, performed more poorly for graphs whose
vertices had all approximately the same degrees.

4.1 Level-2 linear orderings

The 4 di�erent linear orderings of the vertices we introduce now extend the set of
orderings previously introduced and try to overcome their inherent weaknesses.
If we look at the out-degree of a vertex as the number of paths of length 1 leaving
the vertex and, analogously, the in-degree as the number of paths of length 1
entering the vertex, then we can extend such a de�nition to length 2.

Given a vertex v ∈ V let us denote, for simplicity, as successor of v any vertex
w such that (v, w) ∈ E and as predecessor of v any vertex u such that (u, v) ∈ E.
Let us also denote for any vertex v ∈ V with id(v) and od(v) respectively the in-
degree and the out-degree of vertex v. These two values measure the number of
vertices at distance 1, respectively, forward and backward. Thus, if id(v) = h and
od(v) = k then the v has h predecessors (distance 1 backward) and k successors
(distance 1 forward).

We now go at distance 2, trying to overcome some of the problems with the
previous linear orderings. In details, let π(v) and σ(v) denote, respectively, the
set of predecessors and the set of successors of v. Given a vertex v ∈ V, the value

α(v) =
∑

w∈σ(v)

od(w)

measures the number of paths of length 2 starting from v. Analogously, the value

β(v) =
∑

u∈π(v)

id(u)

measures the number of paths of length 2 ending in v.
We note that in such cases a vertex might be both at distance 1 and 2.

Moreover, a vertex might be reachable by more than one path of length 2, both
forward and backward.

Both values above can be weighted using in-degrees and out-degrees. In de-

tails, given a vertex v we multiply its α value by the ratio od(v)
id(v) or by the ratio

id(v)
od(v) . In the �rst case, the obtained value α1(v) will be higher for vertices that

can can reach a high number of vertices in two steps and moreover have a high
out-degree and a low in-degree. In the second case, the obtained value α2(v) will
be, again, higher for vertices that can can reach a high number of vertices in two
steps and moreover have a high in-degree and a low out-degree. Analogously for
the β values.

Assuming that the graph G is strongly connected and, as a consequence,
every vertex has both in-degree and out-degree greater than 0, to each vertex v
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we assign the following 4 values:

α1(v) =
od(v)

id(v)
α(v)

α2(v) =
id(v)

od(v)
α(v)

β1(v) =
od(v)

id(v)
β(v)

β2(v) =
id(v)

od(v)
β(v)

If we keep in mind the optimal linear orderings Lb and Lf which would give
us, respectively, a minimum FAS by removing backward arcs (Lb) or by removing
forward arcs (Lf ), we can reasonably assume that the �rst element of Lb would

be a vertex with high out-degree, low in-degree, thus maximum od(v)
id(v) value.

Moreover, among all the vertices with the highest od(v)
id(v) it would probably be the

vertex which the highest number of forward connections of length 2. Therefore,
it would probably be a vertex with the highest α1 value.

Analogously, the �rst element of Lf would be a vertex with high in-degree,

low out-degree and maximum id(v)
od(v) value. Moreover, also the vertex with prob-

ably the highest number of backward connections of length 2, i.e. it would prob-
ably be an element with the highest β2 value.

We note here that, although, using the ratio id(v)
od(v) as ordering criterion would

certainly be an interesting idea, already used in [18] for instance, for the speci�c
test cases we are studying it would not give us any improvements.

We now de�ne the 8 ordering criteria we are going to use for our tests:

O1: decreasing order of α1 values, denoted with dα1;
O2: increasing order of α1 values, denoted with iα1;
O3: decreasing order of α2 values, denoted with dα2 ;
O4: increasing order of α2 values, denoted with iα2 ;
O5: decreasing order of β1 values, denoted with dβ1;
O6: increasing order of β1 values, denoted with iβ1 ;
O7: decreasing order of β2 values, denoted with dβ2;
O8: increasing order of β2 values, denoted with iβ2.

5 Results

To prove the e�cacy of our newly proposed linear orderings, we ran OminFAS
on the same test cases used in [11] and [4] for comparison. The used ISCAS
circuit testing dataset [8] is available at https://github.com/alidasdan/graph-
benchmarks/tree/master/iscas.

The results where the algorithm and the linear orderings proposed in [4],
column denoted as OFAS, did not reach the known minimum value or where the
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minimum value is unknown, are shown in Table 1. We can see that in 4 of these
6 cases, namely cases 1, 2, 5, 6, the OminFAS algorithms, using the new linear
orderings, improves the results obtained in [4] and in 3 of them, namely 1, 5, 6,
reaches the minimum value.

Another useful set of tests, was introduced and described in [1], also available
at the URL above cited, where one can �nd much larger graphs. Following [11],
we ran our algorithms on 3 of them. In one case the algorithm in [4] reached the
minimum value, the other 2 cases, where the minimum is unknown, are shown
in Table 1 under IBM code.

For the graphs with just one SCC, we can easily highlight some extra infor-
mation. Table 2 shows the best values obtained by each of the 8 orderings. For
the test case denoted "dsip" we show the results for each of its two strongly con-
nected components (denoted dsip1 and dsip2). Although small, such a sample
of test cases is quite signi�cant as we can see of variety of sizes for the graphs
involved. We can see that the average value of the results for the 8 orderings is
very close to the minimum value, except for the �rst graph which has a relatively
small number of vertices and arcs. In other words, the proposed orderings and
the algorithm OminFAS are giving very reliable and stable results. In particular,
in 3 of the test cases, the minimal results is obtained by more than one ordering.

Table 3 also shows how we got the minimum value, either by eliminating
forward or backward arcs. It shows also the number of swaps and the percentage
of arcs which remain in the FAS after we minimize the initially obtained FAS.
Here we can see the e�cacy of the proposed minimization heuristics. In most
cases, we can see how we can reinsert in the graph more than 50% of the arcs
which were initially eliminated. We can also see, how signi�cant the proposed
simple heuristic of swapping vertices in the ordering before removing forward or
backward arcs.

Table 1. Comparing algorithms

ISCAS Code Vertices-Arcs SCC Min OFAS OminFAS

1 s953 730-1090 1 6 7 6

2 s5378 3076-4589 1 30 34 32

3 s9234 3083-4298 21 90 91 91

4 dsip 4079-6602 2 - 159 159

5 s38584 20349-34562 1 1080 1089 1080

6 s38417 24255-34876 437 1022 1023 1022

IBM Code Vertices-Arcs SCC Min OFAS OminFAS

ibm01 12752-36048 6 - 1840 1815

ibm02 19601-57753 1 - 3837 3804
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Table 2. Comparing the 8 linear orderings

Code Vertices-Arcs O1 O2 O3 O4 O5 O6 O7 O8 Avg Avg/Min

s953 730-1090 6 7 12 23 12 10 10 6 10.75 1.79
s5378 3076-4589 36 46 39 33 37 32 41 33 37.125 1.16
dsip 1 1120-1456 79 81 84 103 79 114 81 79 87.5 1.10
dsip 2 1120-1456 82 81 80 99 82 102 81 82 86.125 1.07
s38584 20349-34562 1080 1249 1149 1158 1209 1169 1110 1095 1152.375 1.06
ibm02 19601-57753 3804 3832 4083 4108 3877 3883 3848 3847 3910.25 1.03

Table 3. From initial to minimal FAS

Code F/B Initial FAS Min FAS Order Swaps % Initial FAS

s953 (1) B 18 6 O1 4 33%
s953 (2) B 19 6 O8 1 31%
s5378(1) F 165 32 O6 95 19%
s5378(2) B 350 32 O6 96 9%
dsip 1 B,B,B 103, 103, 103 79 O1,O5,O8 0,1,0 76%
dsip 2 B,F 107, 107 80 O3 0,1 74%
s38584 B 2176 1080 O1 904 49%
ibm02 B 7071 3804 O1 744 53%

6 Conclusions and future work

In our present work, we have proposed an improvement of the algorithm pre-
sented in [4]. By using di�erent heuristics to weight the vertices of a given di-
rected graph, we were able to produce linear orderings which allowed us to obtain
minimal Feedback Arc Sets for strongly connected graphs.

Our algorithm described in Subsection 3.1, lends itself naturally to a possible
parallel execution. We could have 8 parallel threads working on each SCC and
the minimum of the 8 results would be taken into account.

As a future research project, we also intend to work on extending our algo-
rithm by �nding e�cient heuristics to improve the produced linear orderings by
taking into account as di�erent factors as:

� Dynamic properties of the vertices, i.e. if for instance we are eliminating
forward arcs and the next vertex in the linear ordering has now in-degree
equal to 0, all its outgoing forward arcs could be eliminated and then put
back safely, without introducing new cycles. We have performed some initial
experiments using this properties and the results are quite promising.

� A more theoretical characterization of the linear orderings which produce
a minimum FAS and try to make the initially given linear orderings or the
orderings produced thereafter consistent with such properties.

� Dynamically compute the SCC's of the graph, after the elimination of outgo-
ing forward arcs or incoming backward arcs of a vertex. This will allow us to
concentrate only on arcs within the same SCC. We have already performed
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some tests on it and obtained some slight improvements. In pursuing such
an extension and testing its e�cacy, we will generate test cases of known
minimum FAS using the algorithm introduced in [15].

.
Finally, another line of research we intend to follow, is related to the work

done in [5, 7], where the twin Minimum Feedback Vertex Set Problem was tack-
led by means of evolutionary metaheuristics and, in particular an optimization
Immune Algorithm [19], which has been proven to be among the best derivative
free optimization algorithms for many problems, even not so common ones such
as [17] or [6], and for which many related interesting problem could be addressed,
such as the lifespan and the age assignment of an individual in the population
[20]. It would also be quite interesting to see parallel evolutions of di�erent pop-
ulations of individuals (solutions), each one of them randomly initiated using
the di�erent linear orderings.
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Abstract. The paper delves into the analysis of optimization prob-
lems that involve changing problem constraints over time and proposes
a method to adapt metaheuristic algorithms for real-time applications.
The dynamic map labeling problem serves as a case study. In the static
version of the problem, the goal is to position labels without overlap
for maximum readability. However, in dynamic scenarios where the map
view changes, the task becomes more challenging, requiring labels to be
adjusted in real-time. To address this challenge, a Tabu Search algorithm
is adapted to function in a dynamic environment where user interactions
can alter the map view, changing the solution space of possible label
placements on the current map view.

Keywords: Real-Time Optimization · Dynamic Map Labeling Prob-
lem · Metaheuristics · Tabu-Search · Dynamic Constraints Optimization
Problems

1 Introduction

Optimization algorithms play a pivotal role in enhancing a variety of industrial
processes, including logistics, transportation, scheduling, and human behavior
[1,11,9]. These algorithms lead to more e�cient resource utilization, reducing
costs. An optimization problem is de�ned by constraints and an objective func-
tion, and aims at �nding a solution, within the set of feasible solutions, that
maximizes the objective function. Metaheuristic algorithms have been used in
real-world problems in diverse domains, o�ering e�cient and adaptable solutions
[16]. These algorithms, which draw inspiration from nature or heuristic strate-
gies such as warm optimization, evolutionary algorithms, and arti�cial immune
systems, are particularly e�ective in addressing optimization challenges where
conventional exact methods may prove impractical or computationally very ex-
pensive, as in the case of NP-hard problems [21,17].

These algorithms are typically ad-hoc designed to address problems with
well-de�ned constraints and objectives [2,4,10,3], such as optimizing hyperpa-
rameters in machine learning models [22]. While metaheuristics o�er �exibility
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and adaptability, their features make them less suitable for real-time applica-
tions where predictability, optimality, and bounded execution times are critical
[7]. Real-time applications involve interactions with external entities, such as
humans, that change the settings of an optimization problem over time. The
dynamic nature of these interactions necessitates that a metaheuristic algorithm
is able to adapt when constraints and objectives change over time. The presence
of external agents therefore generates a dynamic landscape in which the optimal
solution found by the algorithm at a speci�c time may no longer be optimal in
the next one [18].

In this paper, we focus on enhancing a metaheuristic algorithm, speci�cally
Tabu Search as described in [5], for real-time applications such as dynamic map
labeling problem. The algorithm is designed to dynamically adjust the process
of inserting labels on a map in response to user interactions, such as zooming in
or out. A key innovation of our approach is its ability to operate across multiple
solution spaces, rather than being limited to a single search space. This enables a
more adaptable and e�cient response, ensuring continuous optimization of map
labels in real-time.

2 Dynamic Constraints Optimization Problems

An optimization problem is de�ned by two elements: objective function, and
constraints. The objective function typically seeks to either maximize or mini-
mize a certain quantity, such as pro�t, cost, e�ciency, or any other measurable
metric [19]. The constraints de�ne the search space and regions of feasible solu-
tions, which the algorithm explores so to �nd the optimal solution based on the
objective function [20]. These constraints can be equality constraints, inequal-
ity constraints, or a combination of both, depending on the speci�c problem
being addressed [13]. The �nal goal is to �nd the optimal solution that either
maximizes or minimizes the objective function while satisfying all constraints.
Formally, a typical optimization problem, for instance minimization, is de�ned
as:

min
x

f (x) , s.t. x ∈ X, (1)

where f : X → R is the objective function,and X ⊆ Rn is the solution space
with n representing the number of dimensions.

Optimization algorithms explore the search space by using di�erent strategies
in order to �nd a solution that optimizes the objective function (minimization
in case of eq. 1). If the constraints of the problem change, then it is necessary to
update the solution space to a new one that contains all the feasible solutions
that satisfy the new constraints. This type of optimization problem with dynamic
constraints can be modeled as follows:

min
x(t)

f
(
x(t)

)
, s.t. x(t) ∈ X(t), (2)

where X(t) ⊆ Rn is the solution space at time t. Let us consider two solution
spaces at two distinct instants of time, t1 and t2, with t1 < t2; the two solution
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Fig. 1: Representation of two solution spaces, before X(t1) and after X(t2) chang-
ing the constraints of the problem.

spaces are respectively denoted with X(t1) and X(t2). The intersection of the
two solution spaces can be a non-empty set (Figure 1), indicating that there
are common feasible solutions that satisfy the constraints at both time t1 and
t2. On the other hand, it is possible that a solution x at time t1, contained in
the solution space X(t1), may not be a feasible solution at time t2 because it
does not satisfy the constraints that de�ne the new solution space X(t2). As a
consequence, all the solutions in X(t1) that are not contained in X(t2) must be
discarded at time t2 due to the fact that they do not satisfy the new constraints.

In the formulation made above, we considered the fact that the solution
spaces over time are contained in the same vector space with dimension n, that
is X(t) ⊆ Rn ∀t > 0. However, in real-time optimization, this may no longer be
true. Indeed, changing the constraints of the problem can change the dimensions
of the vector space. Formally, if X ⊆ Rn is a solution space at time t1, and if
a change of constraints of the optimization problem alters the dimensions of
the solution space, then the new solution space will be de�ned as Y ⊆ Rm,
where m is the new dimension of the solution space. Therefore, it might be
necessary to map a solution from a space of dimension n to a solution from
a space with dimension m. To this end, we de�ne a function ϕ : Rn → Rm.
When the problem constraints are modi�ed, all solutions within the solution
space X obtained by the algorithm up to that point must be mapped to the new
solution space Y to adhere to the updated constraints (Figure 2). Subsequently,
the optimization algorithm can proceed to enhance these solutions in order to
identify the optimal solutions within the new solution space. It can be stated
that two solutions, x ∈ X and y ∈ Y , obtained at di�erent times, may have
di�erent objective function values. This contrasts with Equation 2, where the
domain of the objective function remains constant despite changes in problem
constraints. In this new formulation, the objective function is also in�uenced by
changes in constraints. This can then be formally de�ned as:

min
x

fX (x) , s.t. x ∈ X, (3)

where fX : X → R is the objective function to be minimized; X ∈ Ω is the
current solution space that the algorithm is exploring; and Ω is the set of all
possible solution spaces that we can have.
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Fig. 2: Mapping a solution from solution spaceX to solution space Y after having
modi�ed the constraints of the optimization problem.

3 Metaheuristics in Real Time Optimization

Traditional optimization algorithms are typically not well-suited for real-time
problems that involve dynamic interactions with external agents capable of dy-
namically changing the parameters to be optimized. As a result, several strategies
need to be employed to adapt an optimization algorithm so to be used in such
scenarios [6]. Real-Time Optimization (RTO) is a branch of optimization that
focuses on applying optimization algorithms to real-world problems where the
constraints of the problem evolve over time [14].

Metaheuristics are speci�cally developed to address optimization problems
[16]. They iteratively enhance a solution until either the optimal solution is
reached, or a stopping criterion is met [8]. Traditionally, when the constraints of
the problem change and consequently the search space, the algorithm is stopped
and restarted with the new constraints and objectives (Figure 3a). In [15], for
instance, various strategies for addressing the Dynamic Vehicle Routing Problem
are addressed. Among the di�erent techniques explored, the authors discussed
a Parallel Services (PS) framework referred to as ContDVRP. This framework
involves restarting an optimization algorithm each time the parameters of the
problem change. However, this approach can be inconvenient, especially in ap-
plications where the environment in which the algorithm operates is complex
and expensive. Moreover, restarting the algorithm from the beginning results in
the loss of previous knowledge, leading to restarting exploration from scratch on
the new search space.

In order to adapt a metaheuristic in real-time optimization, it is essential
to address how the algorithm should respond to external events that occur.
These events typically involve changes in the constraints of the optimization
problem, often triggered by human actions. Unlike metaheuristics based on a
stopping criterion, the ones employed for real-time optimization must operate
continuously without having a speci�c stopping condition. They are designed
to constantly optimize solutions. In the absence of any external events, when a
metaheuristic algorithm converges toward an optimal solution, if the lower or
upper bound in the case of minimization or maximization problems are known
a priori, it proceeds to look for alternative optimal solutions. Another strategy
involves pausing the algorithm upon reaching an optimal solution, if it is known,
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Fig. 3: Two strategies for adapting a metaheuristic algorithm for real-time opti-
mization.

resuming its operation each time an event occurs that alters the solution space.
Otherwise, if the lower or upper bound is unknown, the algorithm attempts to
improve the current solution (Figure 3b). Therefore, a metaheuristic algorithm
must be able to quickly adapt to these changes introduced by external agents
and adjust its strategy in real-time to �nd new solutions that align with the new
problem constraints.

4 Dynamic Map Labeling Problem

To demonstrate the adaptability of metaheuristics to real-time applications, as
shown in Figure 3b, we examine the task of labeling buildings on a map as a
case study. Previous research has explored the use of optimization algorithms
for similar challenges, such as for instance the one in [12], where a trajectory-
based dynamic map labeling algorithm was proposed. This algorithm predicts
the future positions of objects and assigns labels based on their trajectories,
utilizing a combination of greedy heuristics and simulated annealing optimization
methods.

This section focuses on assessing the response time of a metaheuristic in real-
time scenarios. To demonstrate this, we have enhanced and adapted an existing
Tabu Search algorithm, proposed in [5], to accurately position building labels on
a map, thereby preventing label overlaps and ensuring readability. The placement
of labels on the map is dynamic, adjusting as users zoom in or out on the map.
The enhancement involves evolving the algorithm to handle multiple continually
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changing solution spaces, each corresponding to di�erent map zoom levels. This
evolution marks a signi�cant shift from handling a single static solution space to
managing a series of dynamic solution spaces, requiring the algorithm to rapidly
adjust to new conditions and �nd optimal label placements in real-time.

4.1 Problem formulation

In the context of map labeling, the solution format includes details such as label
positions on the map, label orientations, and text distribution across multiple
lines. All this information is represented by a vector of integer numbers of size
3× n, where n is the total number of labels to be placed on the map [5]. Hence,
a solution is encoded as:

(p1, o1, d1, p2, o2, d2, . . . , pn, on, dn) , (4)

where pi, oi, and di denote the position, orientation, and text distribution of
the i-th label, respectively. The quality of a solution depends on the overlapping
among labels on the map. To this end, we de�ne a matrix denoted as Q ∈ Rn×n,
which contains the percentage of overlap between the i-th and j-th labels. The
objective is to minimize the overlap area among labels. For further information
on how label placements are evaluated, refer to [5]. In the original version of the
algorithm, a map always contains the same number of labels to be placed on the
buildings. However, in this new version, zoom levels have been introduced. Each
zoom level represents a reduction or expansion of the original map, corresponding
therefore to either a subset or a superset of the buildings to be labeled. An action
of zooming in or out on a map means changing the elements of the map itself
and, consequently, altering the solution space in which the algorithm works.
According to Equation 3, the set of all possible solution spaces is then de�ned
as:

Ω = {X1, X2, . . . , Xz}, (5)

where z represents the number of zoom levels considered, and Xi with i =
(1, . . . , z) represents the solution space created based on the elements visible
on the map at zoom level i. The user's interaction with the map, speci�cally
the zoom event, is simulated through the modi�cation of displayed elements on
the map at time t. Two distinct zoom strategies are employed, referred to as
sequential and random. In the sequential strategy, following a zoom event, the
new zoom level may either increase or decrease by one level. Conversely, in the
random strategy, upon a zoom event, the zoom level is chosen randomly.

The transition between two levels of zoom is possible through a mapping
function (denoted with ϕ and described in Section 2) which is responsible for
modifying the solution space by mapping the current solution to a new solution
space. Indeed, in the case of a zoom in, the reduction in the number of labels
on the map decreases label overlaps. Conversely, zooming out may increase the
cost of the solution as the overlapping between labels increases with the growing
number of labels. The zoom mechanism works by utilizing the map's coordinates,
speci�cally by identifying the four corners of the map along with its center.
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Fig. 4: This �gure illustrates how zoom-in works on a map.

Subsequently, it generates z maps by progressively zooming towards the center.
Thus, for example, it transitions from displaying the full map at 100% (zoom
level 0) to a di�erent zoom level, such as 80% of the map. The zoom is carried out
taking into account the center of the map and the main diagonal, subsequently
calculating the new corners to be considered (Figure 4). When there is a zoom in
or zoom out event, the buildings displayed on the map change, a�ecting the labels
as well. Consequently, the solution format (Equation 4) di�ers as it now considers
a di�erent subset or superset of buildings. The process involves repositioning the
labels on the map and transforming a solution encoded in the previous format,
before a zoom event, into a new solution encoded in the updated format, to align
with the new solutions space. Labels that were not visible on the map before
the event, but are now shown after the zoom, are included in the solution using
default values.

4.2 Dynamic Map Labeling Algorithm

In this subsection, we present the pseudo code (Algorithm 1) for the dynamic
map labeling algorithm that can be employed for real-time optimization in dy-
namic environments. We used the same objective and neighborhood functions
introduced in [5]. Here, they are denoted as fX(·) and nhX(·), respectively, and
depend upon the solution space X ∈ Ω under consideration.

The core of this algorithm lies in its ability to e�ectively manage label place-
ments and switch solution spaces using the function ϕ (·) as explained earlier. If
no zoom events occur during the execution of our version of the tabu search al-
gorithm, it will employ the same exploration strategy as a standard tabu search
optimization. The key di�erence is that even if the best solution is found, the op-
timization cycle will not be interrupted until the maximum time tmax is reached.

User interactions play a critical role in how the algorithm continues to try
to optimize the current solution and are simulated by adjusting the zoom level
in the map at regular intervals of time denoted by δt. During the search pro-
cess of the algorithm, particularly during the calculation and evaluation of the
neighborhood of the current solution, the algorithm consistently monitors any
changes in the zoom level (lines from 9 to 14 in Algorithm 1). Upon detecting a
change, the algorithm interrupts the current neighbor search process, facilitat-
ing a transition to a new solution space by mapping the current and tabu-listed
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Algorithm 1: Dynamic Map Labeling Algorithm
Input: Initial label placement x, Initial zoom level i, Set of solutions spaces Ω, Tabu list

size L, Maximum time of execution tmax

Output: Best label placement x∗

1 x∗ ← x; tabu_list← ∅;
2 Let X be the solution space contained in Ω associated with the i-th level of zoom;
3 while max execution time is not reached do
4 best_candidate← None; best_candidate_f ← float(′inf ′);
5 for y in nhX(x) do
6 if y not in tabu_list and fX(y) < best_candidate_f then
7 best_candidate = y; best_candidate_f = fX(y);
8 end
9 if a zoom event occurred then

10 Let X̂ ∈ Ω represent the solution space associated with the new zoom level j;
11 Map the current best solution (x∗) and the elements of the tabu_list from

the solution space X to the solution space X̂ by using the function ϕ;

12 X ← X̂; i← j;
13 Stop this iteration and go to the next iteration;
14 end

15 end
16 if best_candidate is not equal to None then
17 if best_candidate_f < fX(x∗) then
18 x∗ ← best_candidate;
19 end
20 Add best_candidate to tabu_list;
21 end
22 if tabu list size exceeds L then
23 Remove oldest move from tabu_list;
24 end

25 end

solutions to this new context using the function ϕ (·). The if statement within
the for loop, at line 9 in Algorithm 1, improves the computational e�ciency by
preventing to process irrelevant neighbors of x and, in turn, minimizing wasted
time and resources. As a result, the algorithm may experience a slight delay
in solution updates during the neighborhood calculation phase. The maximum
delay occurs when a zoom event happens while the algorithm is evaluating a
neighborhood solution. Therefore, the interval of time in which a zoom event
occurs needs to be greater than or equal to the time it takes for the algorithm
to evaluate a solution. To address this, we introduce a waiting time parameter
denoted as φt such that the interval of time between two consecutive events is
de�ned as:

δt = φt · et, (6)

where et is the estimated time necessary to evaluate a solution. To minimize
delays, one potential strategy is to pre-calculate label placements once and reuse
them each time the user views a map at the same zoom level. Such an approach
could signi�cantly speed up the transition between zoom levels by eliminating
the need to recalculate the default solution of the new labels, but it would lead to
higher data storage demands for multiple zoom levels, increasing memory usage.
Saving the current state at each instance fails to address real-time optimization
requirements, and as such, this approach will not be further explored in this
paper.
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Table 1: Parameters of the algorithm

Symbol Description Value

Ω Set of solution spaces

tmax Time of the simulation 1200s

z Speci�es the number of zoom levels available 6

s Speci�es the zoom strategy Sequential

φt Waiting time used to calculate the duration between two con-
secutive zoom events (Equation 6)

3

L Tabu list size 30

i Initial zoom level 0

Table 2: Statistical analysis on reaction times measured across various maps.
Map Labels Events Rt avg (s) Rt max (s) Rt min (s) Rt std (s)

Milan 63 143 6.2397 9.5781 0.0 3.2479

Paris 66 109 10.3913 12.75 0.0 1.9571

Rome 172 33 35.3945 43.4375 30.0 3.184

Taormina 61 142 6.8724 10.3125 0.0 3.2247

Venice 155 40 31.4538 37.7813 23.2656 3.3392

5 Results

In order to evaluate the algorithm's adaptability within the solution space, we
used reaction time as a metric. The reaction time (Rt) represents the time taken
by the algorithm to adjust map labels to optimize �tness following a zoom event
and preceding another event. Thus, it is the time interval between a zoom event
and when the algorithm identi�es the best solution. If a zoom event occurs at
time tz1 and the algorithm �nds a solution at time t (t > tz1), without further
improving it before another zoom event at time tz2 , the di�erence between t
and tz1 is de�ned as the reaction time, while the waiting time is the di�erence
between tz2 and tz1 . In the worst-case scenario, the algorithm may take the
entire time interval between two consecutive zoom events to improve a solution.
In such cases, the reaction time will be equal to the waiting time, which can
be viewed as an upper bound for the reaction time. The average reaction time
is calculated as the mean of the reaction times throughout the simulation. We
tested our algorithm on �ve di�erent maps using the parameters outlined in
Table 1. These parameters are selected empirically but we will provide a careful
analysis on some of them later in this section. Instead, the maps selected for our
experiments were sourced from OpenStreetMap, an open-source platform for
exporting maps in OSM format. Table 2 displays the average reaction times for
each map under analysis. Zoom events are triggered at regular intervals based
on the parameter φt de�ned in Equation 6. Additionally, we investigated the
distribution of reaction times, which indicate the time required to achieve an
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Fig. 5: Average reaction time based on zoom levels, waiting time and zoom strat-
egy by considering Milan city map.
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Fig. 6: Average reaction time based on zoom levels, waiting time and zoom strat-
egy by considering Paris city map.

optimal label placement after a change in zoom level. The columns in the table
also include the minimum and maximum reaction times, along with the standard
deviation, in addition to the mean value. It is evident that the number of zoom
events occurring during the simulation varies, even when using the same waiting
time φt. As can be inferred from Equation 6, the real waiting time depends on
the time to evaluate a solution, which depends on the map's complexity and is
proportional to the number of layers (check Rome in Table 2).

To better understand the impact of the parameters waiting time (φt), number

of zoom levels (z), and zoom strategies (s), on average reaction time, additional
experiments were conducted. Figures 5 and 6 illustrate the relationship between
average reaction time and the algorithm parameters mentioned earlier. It is
evident that the average reaction time is directly proportional to the number of
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Fig. 7: Comparing �tness evolution over time using sequential 7a and random 7b
zoom strategies on Milan city map.

levels. Interestingly, with an increase in waiting time, the reaction time remains
relatively consistent up to a certain threshold, beyond which it sharply increases.
This behavior can be explained by the fact that increasing the waiting time
results in a larger time window between consecutive zoom events. Consequently,
the algorithm has more time to re�ne a solution and potentially �nd a slightly
better label placement. On the other hand, when the waiting time is shorter, the
interval between consecutive events is reduced. Therefore, when a zoom event
occurs, the algorithm breaks the current iteration, updates the solution space,
and resumes the search in the new solution space. Regarding the relationship
between the average reaction time of the algorithm and the zoom strategies
employed (random or sequential), there does not appear to be a clear correlation,
as evidenced by the plots. The same consideration can also be applied to other
maps that, due to space limitations, cannot be included in this paper.

To further explore in detail how the algorithm handles solutions and adapts
to a new solution space, we conducted an analysis of how the �tness evolves
over time. This analysis highlighted the sensitivity of �tness values to changes
in dynamic contexts. The �gures 7 and 8 depict the changes in �tness over time
during zoom events. These plots illustrate the evolution of �tness over time and
the corresponding zoom levels during zoom events. To generate these plots, we
set a maximum time of 20 minutes, a waiting time of 30, and 10 zoom levels. Due
to space constraints, we only included plots for the maps of Milan and Paris. The
plot on the left displays the �tness evaluation results of using a sequential zoom
strategy, while the plot on the right shows the �tness evaluation results of using
a random zoom strategy. The green peaks in these plots represent operations
of zooming in or out, and they have a signi�cant impact on the e�ectiveness of
the current solution as it is possible to see from the blue line. In the random
zoom strategy (Figures 7b and 8b), the algorithm is more vulnerable to sudden
changes in �tness due to the solution space undergoing drastic changes. For
instance, there could be a shift from maximum zoom level, where the number
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Fig. 8: Comparing �tness evolution over time using sequential (8a) and random
zoom (8b) strategies on Paris city map.

of labels is signi�cantly smaller, to a scenario with no zoom applied, resulting
in the map containing many more labels and requiring the algorithm to start
with default label placements. On the other hand, in sequential zoom strategies
(Figures 7a and 8a), this transition is not as evident. The shift from one zoom
level to another is gradual as two sequential zoom levels share some elements
viewed on the map. As a result, the algorithm only needs to reposition a smaller
number of labels than when two levels of zoom are distant as in the random
zoom strategy can happen. When the zoom level increases from a lower value
to a higher value, the number of labels displayed on a map gradually decreases
as the map is zoomed in. Consequently, the algorithm must adjust a smaller
number of labels to prevent overlaps between them. This results in a decrease
in the �tness value, as fewer labels overlap due to the reduced number of labels
on the map. Conversely, when the zoom level decreases from a higher value to
a lower value, an increase in �tness is anticipated due to the placement of new
labels in default positions, thereby increasing the cost function. The straight lines
in the �tness plots symbolize periods of zooming, indicating moments when the
algorithm pauses its normal operation to accommodate changes in zoom level.

As observed in image 7b slightly before the time 200, the zoom level shifts
from 7 to 1, denoting a signi�cant zoom-out action that drastically changes
the solution space and the number of labels to be placed. Consequently, due to
such a large zoom-out action, the algorithm responds only after a few iterations,
as illustrated by the straight-line ascent of the �tness curve. This phenomenon
exempli�es the concept of reaction time, which has been previously discussed,
highlighting the system's slightly delayed adjustment to rapid drastic changes in
the solution space. When transitioning from a low zoom level to a higher zoom
level (zoom-in), fewer labels need to be placed. Conversely, when transitioning
from a high zoom level to a lower zoom level (zoom-out), a signi�cant number of
labels are added to the map. Consequently, a zoom-out action drastically changes
the solution space. This observation can be seen in Figure 8a, in the range of time
from 700 to 800. Every time there are zoom actions, there are drastic changes
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Table 3: Number of labels for each of the 10 zoom levels considered for the Paris
city map.

Zoom levels 0 1 2 3 4 5 6 7 8 9

Number of labels 66 62 61 58 57 55 52 45 38 28

(a) Full Map (Zoom level 0)

(b) Map (Zoom level 3) (c) Map (Zoom level 8)

Fig. 9: Di�erent perspectives of Milan city map.

in the �tness value. To provide more detail, Table 3 shows the number of labels
for each zoom level. To conclude this discussion, Figure 9 presents the city map
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of Milan at three di�erent zoom levels: the full map without zoom (Figure 9a),
middle zoom level (Figure 9b), and the maximum zoom level (Figure 9c).

6 Conclusions

This research study examines real-time optimization problems that involve chang-
ing constraints of the addressed problem over time. These challenges arise be-
cause, in order to be e�cient, algorithms must adapt to evolving constraints and
quickly provide optimal, or at least acceptable, solutions, and this is a typical
behavior that can be easily �nd in many real-world problems. In this paper we
present a method for adapting metaheuristic algorithms for real-time optimiza-
tion applications. To illustrate this, an existing tabu search algorithm, originally
designed for map labeling, was modi�ed to address dynamic map labeling prob-
lems, where zoom levels change altering the solution space. Experimental results
highlight the e�ectiveness of adapting tabu search for real-time optimization
tasks. Future research could explore integrating machine learning to predict la-
bel importance based on user behavior and implementing a caching system to
enhance the dynamic labeling process.
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Abstract. Bayesian Decision Trees (DTs) have emerged as a significant
tool for Machine Learning (ML) tasks, offering better performance com-
pared to traditional approaches. However, the convergence of Bayesian
Trees can be affected by slow initialization, particularly when employing
the random method. This paper addresses this limitation by proposing an
enhanced initialization strategy for the Sequential Monte Carlo (SMC)
sampler applied to DTs. We demonstrate both experimentally and theo-
retically that our approach accelerates convergence to the posterior dis-
tribution. Our contribution lies in introducing an SMC sampler for DTs
with a refined initialization strategy. By leveraging a more sophisticated
approach, we achieve faster convergence to the posterior distribution,
as substantiated by experimental results and theoretical analysis. Un-
like conventional random initialization methods, our proposed approach
unlocks the full potential of the underlying model.

1 Introduction

1.1 Motivation

Bayesian approaches to the Decision Tree (DT) model have recently emerged
as powerful tools to tackle Machine Learning (ML) classification and regression
tasks. This family of methodologies often provides better classification/regression
scores than traditional approaches, including decision forest [8]. The Bayesian
framework inherits its principles from statistical sampling and probability the-
ory, having the appealing property of incorporating prior knowledge from the
very beginning of the training process. Consequently, the integration of Bayesian
algorithms in ML has gained substantial attention within the scientific commu-
nity with wide-ranging applicability including (but not limited to) psychology [5],
education [7], and chemistry [15, 26]. Despite the state-of-the-art performance,
Bayesian Trees sometimes need a substantial amount of time to converge and
produce acceptable solutions. One of the reasons for slow convergence is the poor
initialization of the population using the random method.
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1.2 Related Work

Researchers during the past years have focused on enhancing the efficiency of the
MCMC methods. The improvements can be categorized into various categories
[24]. One category focuses on the geometric aspects of the target density function.
Hamiltonian Monte Carlo (HMC) [13], for instance, utilizes an auxiliary variable
called momentum, updating it based on the density function’s gradient. While
HMC produces less correlated samples than Metropolis-Hastings, it necessitates
the availability and computational feasibility of the density function’s gradient.

Another category the researchers have explored is the division of complex
problems [22] into smaller and more manageable components. The first tech-
nique employed is the Divide-and-Conquer, which partitions big datasets into
batches, executing independent MCMC algorithms on each subset. Partition-
ing the data space, which is already implemented in the context of Bayesian
DTs [11], or partitioning the parameter space [1] into simpler pieces that can
process independently are proven not to be very effective. The second technique
is the Sub-Sampling, which aims to reduce the number of individual datapoint
likelihood evaluations operated at each iteration towards accelerating MCMC
algorithms.

Chipman and Denison [2, 3] first proposed the Bayesian Decision Trees with
the main difference lying between their priors. Both proposed a model that
generates N samples to estimate the true DT by using the MCMC algorithm
with a relatively simple but general purpose and very restrictive prior. Their prior
aim was to maintain the tree’s shape and structure using some hyperparameters.
Bayesian DTs need many iterations to converge on the “true” DT, especially
when the dataset is large with complex relationships between the features (the
same holds for the conventional MCMC). In general, MCMC generates samples
from a given distribution by proposing new samples and deciding to accept or
reject them based on the evaluation of the posterior distribution. Fundamentally,
the new sample of the chain is based on the previous one, which makes the
MCMC chain inherently sequential, very difficult, and problem-specific on how
to process a single chain MCMC using multiple processing elements. A method
in [10] proposed a single chain parallelization on MCMC DTs; however, the
speedup is not always guaranteed. Most recently, in [12], a different Bayesian
numerical approach is proposed, Sequential Monte Carlo Decision Trees (SMC
DTs), which is inherently parallel and showed great speedup results against
MCMC DTs without compromising its accuracy.

A different method for enhancing the efficiency of the Bayesian methods fo-
cuses on enhancing the proposal function, which is what we study in this paper in
the context of the SMC DTs when it comes to the initialization of the population
at step t = 0. Researchers studied the improvements in the proposals for step
t+ 1, which is right after the initialization of the samples. This can be achieved
through techniques such as simulated tempering [20], adaptive MCMC [4], or
multi-proposal MCMC [18]. In the domain of probabilistic modeling and gener-
ally in Bayesian statistics, the initialization of the populations holds significant
importance. This also applies to the Sequential Monte Carlo algorithms (SMC),
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applied to Decision Trees (DTs) [6,12]. The most common practice often relies on
randomness to generate initial proposals, a method that, while straightforward,
may not exploit the full potential of the underlying model.

1.3 Contribution and Paper Outline

In this paper, we present an implementation of the SMC sampler for the DTs,
which improves the initialization of the proposals while exploiting the full poten-
tial of the algorithm. More precisely, we show experimentally and prove theoreti-
cally that by initializing the proposals more sophisticatedly, our model converges
faster to the posterior distribution. We not only advance the understanding
of SMC DTs but also provide a valuable contribution to the broader field of
Bayesian statistics by addressing the critical aspect of population initialization
as the suggested method can be applied in other domains SMC is used.

The remainder of this paper is organized as follows: Section 2 describes the
DT in general. Section 3 describes the SMC algorithm in the DTs. Section 4
describes the MIC and how it is used in our context following a proof showing
that our method approximates the posterior better than the random method.
Then, in Section 5, we present the numerical results with a discussion. Section
6 summarises the paper.

2 Decision Trees

In this section, we briefly describe the anatomy of a DT, in all its components,
and how this model is used for regression tasks. The reader is referred to [14] for
further details.

Given a dataset comprising a target vector of l records, Y ∈ Zl, and the
corresponding matrix of data points, x ∈ Rl×r, the DT model is trained to
classify a datum, Yj , given the corresponding j-th row in x. In other words,
every data point, xj ∀j = 0, 1, 2, . . . , l − 1, contains r thresholds of the generic
vector of r features, ϕ. Table 1 gives a generic illustration of a dataset.

ϕ0 ϕ1 ϕ2 . . . ϕr−1 target

x0 - - - - - Y0

x1 - - - - - Y1

x2 - - - - - Y2

...
...

...
...

...
...

...
xl−1 - - - - - Yl−1

Table 1: Generic representation of a dataset. The − are used for illustration
purposes but represent generic thresholds in xj relating to a specific feature ϕn.

For a given tree, T, we define d(T) to be the depth of the tree, D(T) to be
the set of the m non-leaf nodes, and L(T) to be the set of leaf nodes. Each tree,
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T, will then have a total of m non-leaf nodes, each node containing a feature, kj

∀j = 0, 1, . . . ,m−1, and a threshold, cj ∀j = 0, 1, . . . ,m−1, both selected from
the dataset. A DT operates by descending a tree. The process of outputting a
regression outcome for a given datum starts at the root node. At each non-leaf
node, a decision as to which child node to progress to is made based on the
datum and the parameters of the node. This process continues until a leaf node
is reached. At the leaf node, a node-specific and datum-independent regression
output is generated. Figure 1 exemplifies a DT with five non-leaf nodes and six
leaf nodes.

root node

k3, c3 k4, c4

k1, c1 k2, c2

k0, c0

res
5

res
6

res
2

res
1

res
3

res
4

Fig. 1: An example of a DT with d(T) = 3, m = 5, and six-leaf nodes each with
a possible quantitative outcome (or result) expressed as a number in R.

3 Sequential Monte Carlo

MC methods can be used to make estimations of the state of a statistical model,
which is described by a posterior distribution (or simply posterior; the terms are
used interchangeably), i.e., the Probability Density Function (PDF) of the state
of the model given some data. The idea is to generate a population of random
samples representing the posterior, with a view to using the samples to make
estimates. However, posterior distributions are often challenging to sample from
directly. SMC is one of the most popular Bayesian classes of methodologies for
sampling from a posterior distribution.

When it comes to Bayesian approaches to DTs, we are interested in making
estimations of the true tree, T, and its set of features and thresholds, θ, given a
dataset described by the target vector, Y, and its related data-points, x, for a
regression problem. Therefore, π(T, θ|Y,x) ∝ π(T, θ,Y|x) is the posterior from
which we want to generate random samples. In this section, we describe how
SMC can be implemented in the specific case of sampling a population of DTs.
The reader is referred to [2, 3, 21].
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The general idea behind SMC samplers is to perform sampling and resam-
pling in sequence for K iterations, ∀k = 0, 1, . . . ,K−1, each of which will gener-
ate and update N independent, weighted samples, tik, ∀i = 0, 1, 2, . . . , N−1. The
samples are first initialized from the initial proposal and weighted as follows:

ti0 ∼ q0(·), ∀i = 0, 1, 2, . . . , N − 1, (1a)

wi
0 =

π
(
ti0,Y|x

)
q0

(
ti0
) , ∀i = 0, 1, 2, . . . , N − 1. (1b)

Then, during each SMC iteration, ∀k = 1, 2, . . . ,K − 1, the samples are
updated from the proposal and weighted as follows:

tik ∼ q(·|tik−1), ∀i = 0, 1, 2, . . . , N − 1, (2a)

wi
k = wi

k−1

π
(
tik,Y|x

)
π
(
tik−1,Y|x

) q (tik−1|tik
)

q
(
tik|tik−1

) , ∀i = 0, 1, 2, . . . , N − 1. (2b)

The weights, wi
k ∀i = 0, 1, . . . , N − 1, are then normalized as follows:

w̃i
k =

wi
k∑N−1

j=0 wj
k

, ∀i = 0, 1, 2, . . . , N − 1, (3)

such that
∑

i w̃
i
k = 1, i.e., 100% of the total probability space.

Since the samples are generated from q(·|·), and not directly from the poste-
rior distribution of interest, this sampling strategy may suffer from a numerical
error called degeneracy, which could make most of the weights equal to 0, lead-
ing towards poor estimations of the state. This problem is commonly tackled by
using resampling when the effective sample size (ESS) of the weights,

Neff =
1∑N

i=1

(
w̃i

k

)2 , (4)

falls down below a user-defined threshold, usually set N
2 . Resampling overwrites

the samples with low weights with copies of the samples with high weights.
Several variants of resampling can be found in the literature [17]. In this work,
we use systematic resampling, which performs three steps.

Systematic resampling first computes cdf ∈ RN , the cumulative sum of Nw̃,
as follows:

cdf i = N
∑i

j=0
w̃j

k, ∀i = 0, 1, 2, . . . , N − 1. (5)

Then, each tik gets copied as many times as

ncopiesi = ⌈cdf i+1 − u⌉ − ⌈cdf i − u⌉, ∀i = 0, 1, . . . , N − 1, (6)

where u ∼Uniform[0, 1], and ⌈·⌉ is the ceiling operator. From (5) and (6) it is
relatively straightforward to infer that

0 ≤ ncopiesi ≤ N, ∀i = 0, 1, 2, . . . , N − 1, (7a)∑N−1

i=0
ncopiesi = N, (7b)
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meaning that, after resampling, we will always have N samples, and those for
which ncopiesi = 0 will be deleted. In the end, resampling resets each weight,
wi, to 1/N .

After resampling, a new iteration starts from (2) and, after K − 1 iterations,
each of the final samples, tiK−1, is used to make a prediction with respect to a
given test dataset. After that, the final estimate is generated by either computing
the mean or the majority voting of the predictions.

3.1 Posterior and Proposal for Bayesian Decision Trees

In this section, we briefly describe how to compute the posterior, the proposal,
and the initial proposal in the specific case of DTs.

Posterior Distribution The posterior is proportional (up to a normalization
constant) to the product of the likelihood and the prior. In other words:

π(T, θ|Y,x) ∝ π(T, θ,Y|x) = p(Y|T, θ,x)p(θ,T) = p(Y|T, θ,x)p(θ|T)p(T),
(8)

where p(Y|T, θ,x) is the likelihood and p(θ,T) is the prior. More precisely, for
each individual term in (8), we use the following expressions:

p(Y|T, θ,x) =
∏l−1

j=0
p(Yj |xj ,T, θ), (9)

p(θ|T) =
∏m−1

j=0
p(kj |T)p(cj |kj ,T), (10)

p(T) =
λm

(eλ − 1)m!
. (11)

Using the Poisson distribution for the p(T) term is a common practice in the
literature [3, 16, 19]. As we can see, (11) only requires tuning of the λ hyper-
parameter. Another valid expression can be found in [23, 27]. This alternative,
however, requires tuning of two hyperparameters. Therefore, we employ (11) for
simplicity.

Proposal Distribution The proposal distribution, q(·|·), consists of a set of
four possible moves, which may either change the dimensionality of the tree or
update its nodes. The possible moves are:

– Grow. This move increases the dimensionality of the tree by uniformly se-
lecting one of the leaf nodes and appending two new child nodes to the
selected leaf.

– Prune. This move decreases the dimensionality of the tree by uniformly
selecting one of the non-leaf nodes and removing its child nodes.
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– Change. This move picks uniformly a non-leaf node, j, and changes its fea-
ture, kj , and threshold, cj . In other words, this move neither increases nor
decreases the dimensionality of the tree.

– Swap. This move picks two non-leaf nodes, i and j, uniformly, and swaps
their features, ki and kj , and their thresholds, ci and cj . Therefore, this
move also maintains the dimensionality of the tree unchanged.

The probabilities of selecting any of these four moves, p(Grow), p(Prune),
p(Change), and p(Swap), are user-defined, but they must sum up to 1, and
a typical choice is to make these probabilities equal to 25%. The value of q(·|·)
to be used in (2b) is described in detail in [9], and omitted here for brevity.

Initial Proposal Distribution In the case of the initial proposal distribution,
the typical approach, which is described in several related works such as [9, 12]
consists of sampling from the following initial proposal:

q0(·) = pU (ϕ)p(T), (12)

where p(T) is the Poisson distribution given by Equation (11), and ϕ is the array
of r possible features to select from the given dataset, and pU (ϕ) is a uniform
distribution, such that:

pU (ϕj) =
1

r
, ∀j = 0, 1, 2, . . . , r − 1. (13)

In other words, the initial proposal in (12) grows each tree according to a
Poisson process, and, every time a new non-leaf node is created, it selects uni-
formly one of the features in ϕ to be assigned to the said non-leaf node’s feature.
This uniform process of selecting the features is rather naive, and, in Section
5 will be named random proposal. In the next section, we propose an alterna-
tive approach, which we prove can initialize the trees much more efficiently and
promote a faster convergence.

4 Initial Proposal with Maximal Information Coefficient

In this section, we present an initial proposal distribution, q0(·), that makes use
of the MIC to decide how to select new features. To provide context, Section 4.1
briefly describes MIC and how to use it to assign a probability to each feature,
while Section 4.2 presents and provides proof of the validity of our approach.

4.1 Maximal Information Coefficient

MIC is a powerful approach used to measure the correlation between two vari-
ables. MIC deals with the correlation analysis of linear, nonlinear, and potential
nonfunctional relationships in large datasets. The fundamental idea of MIC is
that if a specific relationship exists between two features, a grid can be drawn on
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the scatter-plot to partition the features. Then, it will be able to encapsulate the
mutual information of the two features according to the approximate probability
density distribution in the grid. The MIC approach is summarized below.

MIC is calculated based on mutual information and the grid partition method.
Given two independent features with l samples, x = {xj |j = 1, ..., l} and the
related target Y = {Yj |j = 1, .., l}, a finite set D = (xj ,Yj |j = 1, .., l) of or-
dered pairs can be obtained. Given a grid G, we can partition the xj values of
D into l bins and the Yj values of D into l bins. MIC is obtained according to
the following equations:

MI(D,x,Y) = maxMI(D|G), (14)

where MI(D,x,Y) denotes the maximum mutual information of D over grids
G. D|G represents the distribution induced by the points in D on the cells of
grid G. The following equation defines the characteristic matrix of D:

M(D)xY =
MI(D,x,Y)

logmin{x,Y}
. (15)

The MIC of D with grid size less than B(ν) is defined as:

MIC(D)xY = max
xy<B(ν)

{M(D)xY}, (16)

where B(ν) is the upper limit of the mesh division xY. In general B(ν) = ν0.6.
In simple words, for every feature, ϕj ∀j = 0, 1, . . . , r − 1, (16) gives us a score
in the range [0, 1], which encapsulates the degree of correlation between the said
feature and the related target. This means that a higher MIC value indicates
a stronger correlation between the variables. In order to obtain a PDF for the
features, ϕ, we normalize these scores such that these values sum up to 1.0 (i.e.
100% of the total probability space). We name h(ϕ) the PDFs of the features.
In order to sample from h(ϕ), we use a standard Markov process, where we first
compute ch ∈ Rr+1, the prefix sum of h(ϕ). That means the first element in
ch is equal to ch0 = 0, and any n-th element in ch, for n > 0, is equal to
chi =

∑n
i=1. Then, we draw a uniform random number, a, in the range of [0, 1].

We then find the two consecutive elements in ch such that chj ≤ a ≤ chj+1,
and we then pick the j-th feature, ϕj .

4.2 Initialisation of the Population

We want to design an effective initial proposal, q0(·), which initializes the trees
from a favorable initial position (i.e., topology). Ideally, we would want to sample
from the optimal initial proposal, qopt0 (·) = π(T, θ|x,Y). In other words, we
would like to sample directly from the posterior distribution. However, this is
often impossible in practice. Nevertheless, we can still define an initial proposal
that approximates some portions of the posterior well. This will help initialize the
DTs more sophisticatedly and promote faster convergence after the initialization.
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Our approach is to define an initial proposal that efficiently selects the features
to assign to each node of the DTs. In other words, by Bayes’ rule, we can consider
the posterior expressed as follows:

π(T, θ|x,Y) = p(ϕ)p(· · ·|ϕ),

where
r−1∑
j=0

p(ϕj) = 1.0,

and we design an initial proposal that samples approximately well from p(ϕ).
As we have explained in Section 3.1, the typical approach found in the liter-

ature consists of using (12), which selects a feature uniformly for every non-leaf
node of a tree. For obvious reasons, the uniform pU (ϕ) term is far from approx-
imating well p(ϕ).

In the posterior, each feature, ϕj , has an increased selection probability de-
pending on its correlation to the target vector, Y. This makes h(ϕ) a suitable
PDF to sample from in order to evaluate which feature to select. Indeed, h(ϕ)
tries to sample more frequently the features with the highest MIC correlation
with the target. However, in some rare cases with probability ω ∈ [0, 1] and
ω ≪ 1.0, h(ϕ) may occasionally significantly over-sample less important features
and under-sample (just as significantly) more important features. This happens,
for example, when a feature ϕj with probability p(ϕj) ≪ 1

r (i.e., a non-important
feature) is sampled more frequently than 1

r × 100 percent of the time, or when a
feature ϕj with probability p(ϕi) ≫ 1

r (i.e. an important feature) is sampled less
frequently than 1

r ×100 percent of the time. In this rare scenario, sampling from
the pU (ϕ) would be a better idea. Therefore, instead of sampling the features
directly from h(ϕ), we will sample from:

pMIC(ϕ) = (1− ω)h(ϕ) + ωpU (ϕ), (17)

such that the initial proposal becomes:

q0(·) = p(T)pMIC(ϕ) = p(T)((1− ω)h(ϕ) + ωpU (ϕ)). (18)

Under the condition of pre-tuning ω, (17) bounds the worst case of our ap-
proach to pU (ϕ). Therefore, (17) approximates p(ϕ) better than pU (ϕ), as proven
by the following theorem.

Theorem 1. Let ϕ be a list of r features relating to a given dataset, {x,Y}, with
PDF, p(ϕ), which is such that a given feature ϕj has higher probability depending
on its correlation with the target vector, Y. Therefore, a proposal distribution
based on the MIC coefficient as in (17) approximate p(ϕ) better than a uniform
proposal pU (ϕ).

Proof. To prove Theorem 1, we use the Kullback–Leibler (KL) divergence for
discrete functions (as is the case for PDFs relating to Bayesian DTs), which
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measures the divergence of a given PDF, p̂(ϕ), from another PDF, p(ϕ), as
follows:

d(p̂ ∥ p) =

r−1∑
j=0

p̂(ϕj) ln

(
p̂(ϕj)

p(ϕj)

)
. (19)

In the ideal scenario, we have p̂(ϕ) = p(ϕ), which makes d(q0 ∥ p) = 0.
Therefore, Theorem 1 is proven if d(pMIC ∥ p) is closer to 0 than d(pU ∥ p), or,
in other words, if

0 ≤ |d(pMIC ∥ p)| ≤ |d(pU ∥ p)|. (20)

Before computing d(pMIC ∥ p) and d(pU ∥ p), we note that for this proof we
will use the following notation. Since the features are not continuous values in
R, it is convenient to relabel the indexes j in ϕ in such a way that:

p(ϕ0) ≤ p(ϕ1) ≤ · · · ≤ p(ϕt−1) <
1

r
≤ p(ϕt) ≤ p(ϕt+1) ≤ ... ≤ p(ϕr−1)) (21)

In other words, we use the index 0 ≤ j < t to name those features whose
probability is below the average 1

r , and index t ≤ j < r to name those features
whose probability is equal or above the average 1

r . We do this to simplify the
explanation of this proof.

Intuitively, the KL divergence of pU from p(ϕ) is:

d(pU ∥ p) =
1

r

r−1∑
j=0

ln

( 1
r

p(ϕj)

)
. (22)

Sampling the features from (17) means that, in the worst-case, d(pMIC ∥ p) =
d(pU ∥ p). In the other cases, we sample from h(ϕ), such that we propose features
with higher correlation with the target vector, Y, which means that pMIC(ϕ) ≈
p(ϕ) as the MIC captures both linear and nonlinear correlations between variable
pairs of x and Y.

Hence, there are only two possible intermediate cases that may occur. The
first one is when the MIC proposal, h(ϕ), identifies a feature with high corre-
lation, ϕn for n ≥ t, and will assign pMIC(ϕn) = 1

r + ϵ with ϵ > 0, such that
1
r < pMIC(ϕn) < p(ϕn). The MIC proposal will compensate for this by selecting
at least one feature, ϕi for i < t, (or more features, in the most general case)
with a low correlation and reducing its selection probability (or the combined
selection probability, in the most general case) by ϵ, starting with the feature
with the lowest correlation. For brevity, we assume only one feature, ϕi for i < t,
is selected, but the proof works in the most general case as well. Therefore, h(ϕ)
will assign pMIC(ϕi) = 1

r − ϵ, such that p(ϕi) < pMIC(ϕi) < 1
r , and keep ev-

ery other pMIC(ϕj) = 1
r , for j ̸= i, k. This is because, we must always have
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j pMIC(ϕj) = 1. In such case, we need to check if

|d(pMIC ∥ p)| =

∣∣∣∣∣pMIC(ϕi) ln

(
pMIC(ϕi)

p(ϕi)

)
+ pMIC(ϕn) ln

(
pMIC(ϕn)

p(ϕn)

)
+

+
1

r

∑
∀j ̸=i,k

ln

( 1
r

p(ϕj)

) ∣∣∣∣∣ (23)

is lower or equal than

|d(pU ∥ p)| =

∣∣∣∣∣∣1r ln

( 1
r

p(ϕi)

)
+

1

r
ln

( 1
r

p(ϕn)

)
+

1

r

∑
∀j ̸=i,k

ln

( 1
r

p(ϕj)

)∣∣∣∣∣∣ . (24)

The sums on the right-hand side of (23) and (24) are equal for obvious reasons.
This means we only have to compare the remaining terms.

First, by comparing the two terms for ϕi, it is straightforward to show that
they are both positive and that:

pMIC(ϕi) ln

(
pMIC(ϕi)

p(ϕi)

)
<

1

r
ln

( 1
r

p(ϕi)

)
, (25)

because 1 < pMIC(ϕi)
p(ϕi)

<
1
r

p(ϕi)
, since p(ϕi) < pMIC(ϕi) <

1
r .

Second, by comparing the two terms for ϕn, it is straightforward to show
that they are both negative and that:

1

r
ln

( 1
r

p(ϕn)

)
< pMIC(ϕn) ln

(
pMIC(ϕn)

p(ϕn)

)
< 0, (26)

because 0 <
1
r

p(ϕn)
< pMIC(ϕn)

p(ϕn)
< 1, and 1

r < pMIC(ϕn) < p(ϕn). Therefore, (20)

is valid in this intermediate case.
In the other possible intermediate case, the MIC proposal assigns pMIC(ϕi) =

1
r − ϵ and pMIC(ϕn) =

1
r + ϵ, such that pMIC(ϕi) < p(ϕi) <

1
r and 1

r < p(ϕn) <
pMIC(ϕn). In this case, it is still possible to prove (20) by repeating the analogous
steps to (23), (24), (25), and (26), which are omitted here for brevity. ⊓⊔

In the next section, we compare an SMC sampler for DTs with (18) as the
initial proposal vs an identical SMC sampler for DTs with (12) as the initial
proposal and show that our proposed approach initialized the DTs trees better
and converge faster. In the next section, we will refer to this approach as MIC
proposal.

5 Numerical Results

As described in 4.1, the main objective of our proposed algorithm is to make
informed initialization of the DTs using insights inherited from the dataset,
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demonstrating the overall performance and convergence efficiency. In this sec-
tion, we will first present the results and the accuracy improvement of the pro-
posed method, followed by a discussion.

In order to show the overall algorithm improvement, we experiment on three
publicly available datasets on the UCI machine learning repository. More pre-
cisely, the first dataset is called Real Estates, which has 157 records and 8 fea-
tures and provides data to train a model to predict house prices. The second
dataset is called Load Diabetes, which has 442 records and 10 features, where
the model is trained to predict the level of blood glucose. The third dataset is
called Students’ Marks, which has 100 records and 2 features, and the predictive
outcome is the students’ performance.

We have run the contesting algorithms for 100 iterations for all datasets and
reported the Mean Squared Error (MSE) for every 10 iterations. Experiments
have shown that 100 iterations are enough for the algorithm to converge and
produce acceptable predictions. The goal is to monitor and report the lowest
MSE and examine the influence of the initial proposals when the model is trained
on different numbers of iterations. We note that, the hyperparameter ω in (18)
has been empirically pre-tuned to 0.01.

For the first dataset, Real Estates, we observe a significant improvement in
initializing the proposals when MIC proposal is utilized. The MSE using MIC is
102.5 compared to 132.9 using the random method. Figure 2a demonstrates that
as we run the algorithm for more iterations, the MSE achieved with the MIC
proposal is progressively lower than the MSE achieved with the random proposal.
The MSE score using the MIC proposal is 11.5, and the MSE using the random
proposal is 33.5. For the second dataset, Load Diabetes, the improvement in
the initialization is less prudent when the MIC proposal is utilized. The MSE
using the MIC proposal is 4184.6 compared to 4186.3 using the random proposal.
Figure 2b shows that as we run the algorithm for more iterations, the MSE with
the MIC proposal is progressively lower than the one with the random proposal.
Indeed, we observe that the best MSE score with the MIC proposal is 3749.1,
while the MSE score using the random proposal is 3927.6. The third dataset,
Students’ Marks, produces results in line with the first dataset. We observe
a significant improvement in initializing the DTs when the MIC proposal is
utilized. The MSE achieved with the MIC proposal is 29.1 compared to 47.5 MSE
achieved by using the random proposal. Indeed, Figure 2c shows that the MSE
using the MIC proposal is consistently lower than the MSE using the random
proposal. The minimum MSE scores are 3. and 6.5, for the MIC proposal and
the random proposal, respectively.

The experiments have shown that implementing a more data-driven and in-
formed initialization strategy for the samples helps to explore the solution space
more efficiently and converge to a satisfactory solution faster. Specifically, for
the Real Estates dataset and the Student Marks, the MIC proposal improved
impressively the starting position of the samples, resulting in a lower MSE and
faster convergence. Regarding the Load Diabetes dataset, the initialization of
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the proposals using the MIC was not as significant; however, overall, the model
benefits from a more sophisticated initialization strategy in the long run.
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Fig. 2: Comparison between MIC and Random Initial Proposals

6 Conclusion

In conclusion, this paper addresses a critical challenge in the convergence of
Bayesian DTs by presenting an enhanced initialization strategy for SMC sam-
plers for DTs using an initial proposal distribution that selects features based on
their MIC coefficient. Indeed, despite the superior performance of Bayesian DTs
in supervised learning tasks, previous work employing a purely random initial-
ization suffers from slow convergence. Hence, our refined initialization strategy
has been experimentally and theoretically demonstrated to accelerate conver-
gence to the posterior distribution. More precisely, on three publicly available
datasets for regression problems, our proposed approach shows better MSE by
a 1.5× factor after the initialization of the population of DTs, and a reduction
of the MSE by up to a factor of three after convergence.

Even though the results are encouraging, there are several new avenues for
future work to explore. First, we could improve the quality of the predictions
by proposing more sophisticated sampling mechanisms for Bayesian DTs, such
as [25], to be adopted after the initialization. Improving the proposal mecha-
nism typically affects the run-time of the algorithm. This could be addressed by
exploring state-of-the-art parallel processing architectures, such as GPUs.
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In Petrică Vizureanu, editor, Enhanced Expert Systems, chapter 3. IntechOpen,
Rijeka, 2019. doi:10.5772/intechopen.83380.

20. Enzo Marinari and Giorgio Parisi. Simulated tempering: a new monte carlo scheme.
EPL (Europhysics Letters), 19(6):451, 1992.

21. Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo sam-
plers. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
68(3):411–436, 2006. URL: http://www.jstor.org/stable/3879283.

22. Per Mykland, Luke Tierney, and Bin Yu. Regeneration in markov chain samplers.
Journal of the American Statistical Association, 90(429):233–241, 1995.

23. Matthew T. Pratola. Efficient Metropolis–Hastings Proposal Mechanisms for
Bayesian Regression Tree Models. Bayesian Analysis, 11(3):885 – 911, 2016.
doi:10.1214/16-BA999.

24. Christian P Robert, Vı́ctor Elvira, Nick Tawn, and Changye Wu. Accelerat-
ing mcmc algorithms. Wiley Interdisciplinary Reviews: Computational Statistics,
10(5):e1435, 2018.

25. Malcolm Strens. Efficient hierarchical mcmc for policy search. In Proceedings
of the Twenty-First International Conference on Machine Learning, ICML ’04,
page 97, New York, NY, USA, 2004. Association for Computing Machinery. doi:
10.1145/1015330.1015381.

26. Patrik Waldmann. Genome-wide prediction using bayesian additive regres-
sion trees. Genetics Selection Evolution, 48, 12 2016. doi:10.1186/

s12711-016-0219-8.
27. Yuhong Wu, H̊akon Tjelmeland, and Mike West. Bayesian cart: Prior specifica-

tion and posterior simulation. Journal of Computational and Graphical Statistics,
16(1):44–66, 2007. doi:10.1198/106186007X180426.



Multi-Assignment Scheduler: A New Behavioral
Cloning Method for the Job-Shop Scheduling

Problem

Imanol Echeverria1[0000−0001−6053−0589], Maialen Murua1[0000−0001−7922−6771],
and Roberto Santana2[0000−0002−0430−2255]

1 TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San
Sebastian, Spain

2 Computer Science and Artificial Intelligence Department, University of the Basque
Country (UPV/EHU), Donostia-San Sebastian, Spain

Abstract. Recent advances in applying deep learning methods to ad-
dress complex scheduling problems have highlighted their potential in
learning dispatching rules. However, most studies have predominantly
focused on deep reinforcement learning (DRL). This paper introduces
a novel methodology aimed at learning dispatching policies for the job-
shop scheduling problem (JSSP) by employing behavioral cloning and
graph neural networks. By leveraging optimal solutions for the train-
ing phase, our approach sidesteps the need for exhaustive exploration
of the solution space, thereby enhancing performance compared to DRL
methods proposed in the literature. Additionally, we introduce a novel
modelling of the JSSP with the aim of improving efficiency in terms of
solving an instance in real time. This involves two key aspects: firstly,
the creation of an action space that allows our policy to assign multiple
operations to machines within a single action, substantially reducing the
frequency of model usage; and secondly, the definition of a state space
that only includes significant operations. We evaluated our methodology
using a widely recognized open JSSP benchmark, comparing it against
four state-of-the-art DRL methods and an enhanced metaheuristic ap-
proach, demonstrating superior performance.

Keywords: Job-shop scheduling problem · Behavioral cloning · Markov
process · Graph neural networks.

1 Introduction

In the realm of manufacturing and production, efficiently solving the job-shop
scheduling problem (JSSP) is a cornerstone for achieving optimal operational
performance [16]. The JSSP, a well-known combinatorial optimization (CO)
problem, is crucial in various industries, particularly those involving complex
and diverse manufacturing procedures. The objective in JSSP is to optimally
assign a series of jobs to a limited number of machines, typically with the goal
of minimizing the overall completion time, known as makespan. This problem,
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however, is notoriously difficult due to its NP-hard nature, meaning that find-
ing the optimal solution within a reasonable timeframe becomes increasingly
impractical as the problem size grows [15].

Traditional strategies for tackling the JSSP predominantly rely on exact
techniques, such as mixed-integer linear programming (MILP) and branch-and-
bound algorithms [36]. These methods, while effective in certain scenarios, often
struggle with the scalability and complexity inherent in real-world scheduling
problems. As a result, heuristics and metaheuristics, including tabu search [25],
genetic algorithms [10], and simulated annealing [11], have been widely adopted.
However, they still face challenges in consistently achieving near-optimal solu-
tions, especially in highly complex scheduling environments.

Recent advances in deep learning (DL) and, more specifically, deep reinforce-
ment learning (DRL), have opened new avenues for tackling the JSSP [7]. The
ability of DLR to learn and adapt to complex patterns makes it a promising
tool for developing efficient dispatching rules in scheduling problems. Unlike tra-
ditional methods, DRL can learn end-to-end policies that map the state of the
scheduling environment directly to the dispatching actions, potentially offering
improved solutions. This is particularly relevant in the context of JSSP, where the
scheduling environment can be exceedingly intricate, and the standard heuristic
rules may not suffice [24].

The application of DRL in solving scheduling problems faces several chal-
lenges. First, the size of the solution space makes the process of finding optimal
solutions computationally demanding. This complexity can hinder the policies
ability to train on optimal instances, thereby limiting its effectiveness. Addition-
ally, for smaller problem instances, exact methods such as constraint program-
ming (CP) can yield optimal solutions [8], but RL-based methods cannot effec-
tively integrate such knowledge. Methods based on behavioral cloning (BC) [19]
allow for the imitation of assignments of operations to machines that generate
an optimal solution, but their use is much more limited in scheduling problems.
This is because by using only optimal instances, the solution space may not be
fully explored, potentially leading to inferior performance.

Furthermore, the modeling of the state and action spaces presents its own
set of limitations. The action space generally entails assigning an operation to
a machine, which implies that the model will be used as many times as oper-
ations the problem instance has. For larger instances, this approach might be
too time-consuming as it could fail to generate solutions in real-time. Addition-
ally, while recent methods represent the problem instance through graphs [30],
this approach may not be feasible for larger problems, due to the number of
operations to process. In such scenarios, taking into account operations that are
not imminent in the scheduling process may not be necessary for immediate
decision-making. Hence, there is a clear need for more efficient representation in
DRL-based methods to improve decision-making in the face of complex schedul-
ing challenges.
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Therefore, in this paper, we focus on overcoming these limitations by propos-
ing a new method for modeling the JSSP as a Markov Process (MP) and finding
an optimal policy. Our contributions are as follows:

– We introduce a training approach for DL models using heterogeneous graph
neural networks (GNNs) and BC, utilizing fewer but optimal CP-generated
solutions from complete and partially solved instances, achieving superior
results compared to DRL methods.

– We propose a new way of representing the JSSP as a MP. This involves
defining a state space that limits the number of operations and an action
space that allows assigning multiple operations in a single action instead of
a single assignment, reducing the number and cost of state transitions and
the number of model usages in the inference phase.

– We have conducted experiments using the Taillard benchmark [31], a well-
known benchmark with instances of varying sizes. Our method has been
compared against four state-of-the-art DRL methods, and an enhanced meta-
heuristic approach, outperforming all of them.

The organization of the paper is as follows: We begin with a review of DL
methods in scheduling in Section 2. The formulation of the JSSP is detailed
in Section 3. An in-depth explanation of our proposed method is provided in
Section 4. The discussion of experiments conducted and their results is found
in Section 5. Finally, the paper concludes with a summary of our findings and
potential avenues for future work in Section 6.

2 Related work

In this section, we focus on the application of DL methods to CO problems.
We begin by discussing how DL has been applied to routing problems, such
as the traveling salesman problem (TSP) and the capacitated vehicle routing
problem (CVRP). Our discussion then shifts to scheduling, where we examine
the application of DL in the field.

Regarding routing problems, in [34], the Pointer Network (Ptr-Net), a DL
model that uses neural attention, was applied to various CO problems, including
the TSP. The model was trained using a set of optimal solutions. In [2], this work
was expanded using DRL, specifically the REINFORCE algorithm, to train Ptr-
Net for the TSP, while the authors of [26] adapted it for the CVRP. A significant
advancement was the application of attention models to CO problems, replacing
the Ptr-Net with a transformer, enabling better understanding of relationships
within the components of CO problems and thus enhancing performance [20].

The application of DL, particularly DRL, has recently been extended to
scheduling problems. Early approaches encapsulated state information in a vec-
tor containing features. The authors in [32] proposed an RL-based method, where
each job was represented by a feature vector, and a multi-layer perceptron (MLP)
based policy was used to decide whether a job should be assigned to a machine.
The major limitation of this approach is its lack of size-agnosticism; the network
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cannot solve instances of varying sizes without retraining. A subsequent step pre-
sented in [23] involved using convolutional networks that utilized three matrices
to represent the problem, with the action being the selection among various dis-
patching rules. This approach, however, was constrained by its simplistic action
space, limiting the quality of solutions.

To overcome these challenges, the authors in [38] modeled the JSSP using a
disjunctive graph and introduced an end-to-end DRL method for learning dis-
patching rules. The use of graphs and GNNs addressed the size-agnosticism chal-
lenge and captured a wide range of information for complex scheduling problems.
GNNs facilitate information sharing between operations connected by conjunc-
tive and disjunctive edges within a disjunctive graph. Several approaches have
been introduced with varying reward functions, training algorithms, masking
techniques, and model structures [5, 17,21,27,33].

Another method for modeling different nodes and their relationships is the
use of heterogeneous graphs. Song et al. [30] proposed using heterogeneous graph
attention networks (HGATs) to address the flexible job-shop scheduling problem,
a variant of the JSSP in which operations can be assigned to multiple machines,
creating nodes for operation and machine types with various edge types to in-
dicate precedence and machine-operation relations. This method simplifies the
action space compared to disjunctive graphs by reducing the number of edges.

In scheduling, several approaches have employed optimally generated solu-
tions for model training with BC, using optimal solutions to train the neural net-
works (NNs). This stands in contrast to RL, which can be more time-consuming,
as RL training necessitates exploring sub-optimal experiences to discover opti-
mal solutions. There is a clear disparity in the number of contributions that
employ BC compared to those using RL. In [19], the authors introduced an ap-
proach that utilizes a MILP solver to produce optimal demonstrations, aiming
to acquire an efficient dispatching rule for the JSSP. The authors of [6] proposed
a method for the flexible job-shop scheduling problem by dividing it into two
separate problems and training distinct convolutional networks with instances
solved by the IBM CP-Optimizer solver. However, these approaches are not size-
agnostic, requiring a model to be trained for each problem instance, thus limiting
their applicability. Lastly, the flow shop scheduling problem, a simpler variant
of the JSSP, was addressed in [22], using GNNs to replicate actions and states
generated by the NEH [28] algorithm, surpassing NNs trained through RL.

3 JSSP Formulation

The JSSP can be formally defined as follows. Let there be a set of jobs J =
{j1, j2, ..., jn} and a set of machines M = {m1,m2, ...,mm}. Each job ji consists
of a sequence of operations {oi1, oi2, ..., oik} that need to be processed in a specific
order. Each operation oij is to be processed on a specific machine mij for a
duration of pij , which is the processing time. The objective is to find a schedule
S, which is a set of start times for each operation oij , such that the following
conditions are met: 1) Sequence constraint: each operation of a job must be
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completed before the next operation of the same job begins. 2) No overlapping
constraint: each machine can process only one operation at a time. The most
common objective is to find a schedule that minimizes the makespan, which is
the completion time of the last operation in the schedule.

Table 1. JSSP instance with 3 jobs and 3 machines where the processing times of each
operation are indicated.

Jobs Operations m1 m2 m3

j1 o11 - 4 -
o12 - - 3
o13 4 - -
o14 - 3 -

j2 o21 - 2 -
o22 2 - -

j3 o31 - - 2
o32 - 2 -
o33 1 - -

In Table 1, a simple instance of the JSSP with 3 jobs and 3 machines is pre-
sented, where their operations and processing times are listed. Within Figures 1
and 2, two solutions to the problem are depicted. In these images, each distinct
color corresponds to a job, while the x-axis represents time, and the y-axis ma-
chines. It can be observed that the second solution, which is optimal, achieves a
lower makespan as operations are parallelized more efficiently in this solution.

Fig. 1. A solution to the JSSP instance
with a makespan of 17.

Fig. 2. An optimal solution with a
makespan of 14.
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4 Proposed method: Multi-assignment scheduler

In this section, we present our method for generating a policy trained based on in-
stances solved optimally by a CP-based method, which we call Multi-assignment
scheduler (MAS). First, we will describe how the JSSP has been modeled as a
Markov process, followed by a description of the GNN used, and finally, the
instance generation method and model training.

4.1 The JSSP as a Markov Process

The first steps consist of framing the problem as a Markov process, distinguishing
it from current approaches that use Markov decision processes by not requiring a
reward function. This simplifies the modelling to define a state space, an action
space, and a transition function.

State space. Building upon the previously introduced state space represen-
tation in [12], we employ heterogeneous graphs. At each timestep t, the state st
is represented as a heterogeneous graph Gt = (Vt, Et), consisting of three node
types (operations, jobs, and machines) and six edge types, both directed and
undirected. The number of operations considered per job within the state is
constrained to a fixed number (in our experiments, 10). This limitation reduces
the amount of information to be processed at each step, particularly beneficial in
larger instances, where the influence of operations with many unassigned tasks
is deemed insignificant in current assignments. For a more detailed description
of the features of the nodes and edges, we refer the reader to the paper [12]
(section 4.2, pages 7-8).

Action space. At each timestep t, the action space At consists of compati-
ble job-machine pairs. When selecting a job, the first unscheduled operation of
that job is selected. To prevent over-selection, the set of pairs is limited in two
ways. Firstly, we define st as the timestamp at which the first operation can be
assigned to a machine, and actions are masked accordingly, making operations
starting later than st∗p illegal. Here, p is close to one (1.05 in our experiments).
Secondly, the number of possibilities is constrained to the number of machines
in the instance. This particularly affects larger instances with many jobs and
few machines to avoid considering too many options simultaneously.

Transition function. The solution is built through the sequential assign-
ment of operations to machines. Upon the assignment of an operation, the oper-
ation is removed, and the edges of the corresponding job are updated to indicate
the next operation to be executed.

In Figure 3, a state transition with the different types of nodes and their
relationships is depicted, where the maximum number of operations per job is
set to 2. For simplicity, only jobs j2 and j3 are represented. As can be observed,
even though j3 has 3 operations, only the first two are processed, and once the
action is taken, the assigned operations are removed.
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Fig. 3. Diagram depicting the example from Table 1 and a state transition where
operations o31 and o21 have been assigned.

4.2 Graph Neural Network Architecture

The use of GNNs is common for extracting features from a state of a Markov
process representing a CO problem, particularly those using attention mecha-
nisms [30,35]. In a previous work [12], we used the architecture proposed in [3],
GATv2. In this case, we will adapt the architecture proposed by [29] and [18],
inspired by transformers, for heterogeneous graphs because in preliminary ex-
perimentation we have identified that this is more robust than the one previously
used.

To make its use clearer, we will show how to calculate the embedding of
the operation node. The operation node is related to the operation that follows,
indicating precedence, and the machines on which it can be executed. The initial
representation of this node is called hoij ∈ RdO , where dO is the initial number
of node features. First, we need to calculate the attention coefficients for the two
relationships. If the operation has a successor, between operations oij and oij+1,
the coefficient αoijj+1

is defined as:

αoijj+1
= softmax

((
WO

1 hoij

)⊤ (
WO

2 hoij+1

)√
d′O

)
(1)

where WO
1 ,WO

2 ∈ Rd′
O×dO are learned linear transformations, and d′O is the

dimension given to the hidden space of the embeddings. To calculate this value
for the relationship between operations and machines, it is similar, only adding
the edge feature. For operation oij and mk, the edge feature is denoted homijk ∈
RdOM , where dOM is the dimension of the feature, and hmk ∈ RdM is the
representation of machine mk, and dM is its dimension. The attention coefficient
αomijk

is computed as:

αomijk
= softmax

((
WOM

1 hoij

)⊤ (
WOM

2 hmk +WOM
3 homijk

)√
d′OM

)
(2)

where WOM
1 ∈ Rd′

OM×dOM , WOM
2 ∈ Rd′

OM×dM , and WOM
3 ∈ Rd′

OM×dOM .
Once the attention coefficients have been calculated, the new embedding of oij ,
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h′
oij

is computed as:

h′
oij

= WO
3 hoij + αoijj+1

WO
4 αoijj+1

hoij+1
+∑

mk∈Omk

αomijk
(WOM

4 hmk +WOM
5 homijk) (3)

There are two ways to add complexity to the GNN to capture more meaningful
relationships between nodes: multiple attention heads and increasing the num-
ber of layers. Using multiple attention heads is a common technique in various
domains such as neural machine translation or computer vision [1, 4], and in
CO problems [26, 35], as it allows us to focus on important nodes and rela-
tions. Assuming we have K attention heads, h′k

oij
, k = 1, 2, . . .K, K embeddings

are calculated, and each attention head has its own attention coefficients with
its respective linear transformations. Once calculated, they are concatenated to
obtain the final embedding:

h′
oij

= ∥Kk=1h
′k
oij

(4)

The second way to add complexity is to use multiple layers, i.e., repeating the
procedure L times but with different learnable parameters in each layer. Having
a sufficient number of layers is essential for information from nodes that are not
directly connected to propagate, as in layer l, embeddings calculated in layer
l − 1 are used. The output of this layer is called hL

oij
.

4.3 Training procedure with BC

The information from the GNN embeddings is used to generate a policy. MLPs
are utilized to define the policy on edges connecting compatible jobs and ma-
chines. Specifically, if the set of edges for the state st is denoted as JMt, the
score of selecting an edge e ∈ JMt, where this edge connects job ji and machine
mk, and the edge features are denoted as hjimk , is defined as follows:

µθ(e|st) = MLPθ(h
L
ji ||h

L
mk

||hjimk) (5)

πθ(e|st) = softmax

(
µθ(e|st)−

∑
x∈JMt

µθ(x|st)
|JM|

)
(6)

In Equation 6, the average is taken to ensure that at least one action will be
selected (only positive actions are selected), and the softmax function is employed
to constrain the values between 0 and 1.

After defining the MP and selecting the GNN architecture, training the agent
using BC involves generating a set of optimal solutions for ni instances, denoted
I. This is achieved by synthetically generating a set of instances that can be
solved using CP techniques in less than 10 seconds (in order to lower the com-
putational cost of generating the dataset), followed by constructing a trajectory
of states and actions. Additionally, in this paper, it is proposed to start the
construction of an instance solution by randomly selecting operations until at
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least a partial solution has been completed. The length of the partial solution is
determined by a percentage parameter. This parameter is randomly chosen for
each instance uniformly in [0, 0.3]. The aim of this procedure is to create a more
diverse dataset in which the model can learn from different scheduling scenarios
that may arise.

Given the constructive nature of the approach, feasible assignments of op-
erations to machines must be established. Initially, operations are sorted by
their start time and end time, facilitating the construction of a sequence of
states and actions. Each step will consist of all possible operations until there
is an operation that must be assigned to a machine to which another operation
has already been assigned. That is, in a single action, two operations cannot
be assigned to the same machine. Formally, for each instance ii ∈ I, the set
Di = {(s1, a1), (s2, a2), . . . , (sdi

, adi
)} is defined, where di represents the number

of actions to solve the instance. For all t = {1, 2, . . . di}, st represents a heteroge-
neous graph, and at denotes the action to be taken, which is a vector with zeros
in the pairs of jobs and machines that are not to be executed and ones in those
that are. The final dataset is defined as the union of all Di, that is D =

⋃
ii∈I Di.

These trajectories constitute the dataset used to train the GNN as a super-
vised learning model, specifically as a multi-label classification problem. Training
occurs over ne epochs, with the dataset divided into batches of size nb for each
epoch. Binary cross-entropy is used as the loss function, since this is a classifi-
cation problem.

5 Experimental results

In this section, we describe the experimental setup and present the results of our
method in comparison to other approaches.

5.1 Experimental Setup

Configuration. For the implementation of our proposed method, Python 3.10
was employed and PyTorch Geometric for the implementation of the GNNs [14].
For the CP method, OR-Tools3 was selected due to its open-source nature and
widespread use in scheduling problems [9]. The experiments were conducted on
a machine equipped with an AMD Ryzen 5 5600X processor and an NVIDIA
GeForce RTX 3070 Ti. The code is publicly available at https://github.com/
Echever/MAS_Scheduler.

The configuration parameters were set as follows: the number of the GNN
layers to 4, the number of all the hidden channels to 128, the number of attention
heads to 4, the number of epochs to 25, the batch size to 64 and the learning
rate to 0.0002. Regarding the action mask, the number of actions considered was
limited to a maximum of the number of machines in the instance, and only those
operations that could start at 1.05 times the current timestamp were considered.

3 We obtained the implementation from https://github.com/google/or-tools/

blob/stable/examples/python/flexible_job_shop_sat.py.
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Dataset. For generating the training dataset, a set of instances were cre-
ated and solved using OR-Tools, using 5300 in the training phase and 50 as
the validation set. This set was generated by modifying the method proposed
by Taillard [31] to ensure greater diversity in the training set. Specifically, the
quantity of jobs, nj , was sampled from U(10, 20), the number of machines, nm,
from U(10, nj), the number of operations per job from ∼ U(nm, nm+5), and the
processing time for each operation sampled from U(5, 90). As mentioned earlier,
each instance is solved until a certain percentage of operations are assigned (be-
tween 0 and 0.3 of the total). For the test set, the well-known JSSP benchmark
dataset by Taillard [31] was used. It consists of 80 instances ranging from 15 jobs
and 15 machines (with 225 operations) to 100 jobs and 20 machines (2000 oper-
ations), providing a comprehensive overview of a method’s performance across
instances of varying sizes.

Baselines.Our approach is compared to several methods that focus on learn-
ing a priority rule using DRL. Among the various DRL-based approaches, we
compare with the four state-of-the-art approaches: the method proposed in [33],
which uses a CP method as the input of their method and for feedback defining
the reward (in this paper we refer to this approach as RLCP); [21], which em-
ploys attention mechanisms similar to this paper (AttSch); [17], which introduces
a method called residual scheduling that eliminates unnecessary operations and
machines (ResSch); and the method proposed in [37], which uses a new state rep-
resentation using the state features of bidirectional scheduling (BiSch). Addition-
ally, our approach is also compared with an enhanced metaheuristic [13], which
has been shown to outperform traditional JSSP metaheuristics. Of the three
types of policies they trained, the best for the Taillard benchmark, NLSAN , is
chosen. Of the methods mentioned, all use the Taillard benchmark and present
their results on the instances, except for RLCP, for which their open-source
implementation was used.

Evaluation Metric. Performance is evaluated based on the optimal gap,
with the makespan serving as the optimization target, which is defined as:

OG =

(
Cπ

Cub
− 1

)
· 100 (7)

where Cπ is the makespan produced by a policy and Cub is either the instance’s
optimal or best-known makespan.

5.2 Results on the Taillard JSSP benchmark

Performance Analysis. This subsection presents an analysis of our method’s
results on the Taillard benchmark. Table 2 shows the optimal gap achieved by our
method and the state-of-the-art techniques. Each column of this table represents
the average of the results for ten instances with the same number of jobs and
machines. The first row of the table presents the results from the enhanced meta-
heuristic method NLSAN . Following this, the table includes results from various
constructive methods that utilize DRL. For each method, the table displays the
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average gap from the optimal solution. The final column of the table aggregates
these averages to present the average optimal gap when the complete benchmark
is considered. A key observation from the table is that our method maintains a

Table 2. Optimal gap comparison with an enhanced meta-heuristic, DRL methods,
and MAS in the Taillard benchmark.

Method 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20 Mean

NLSAN 10.32 13.18 12.95 14.91 17.78 11.87 12.02 6.22 12.41

BiSch 17.85 20.59 19.53 22.39 23.32 16.03 17.41 8.91 18.25
ResSch 13.70 18.00 16.50 17.30 18.10 8.40 11.40 4.00 13.40
AttSch 13.10 17.90 16.10 19.60 22.80 12.90 16.80 9.30 16.06
RLCP 16.27 19.75 18.61 18.29 22.81 10.13 14.03 4.56 15.55
MAS 13.54 13.96 13.40 14.84 17.40 7.08 9.51 2.31 11.50

consistently lower average gap from the optimal solution compared to both DRL-
based and the enhanced metaheuristic NLSAN . This is particularly noticeable
in larger instances, especially those with 30 jobs or more, where our method
outperforms all the other methods. In comparison with other DRL methods, our
approach yields better results in nearly all the instance groups, with the only
exception being the very first group, the smallest. Additionally, our method
demonstrates effective generalization capabilities, as it maintains low optimal
gap values in instance sizes that are larger than those in the training dataset.

Analysis of the quantity of model usages. Figure 4 offers an analysis
comparing how frequently different models are used in the Taillard benchmark
across various approaches. The graph plots the number of operations in an in-
stance (shown on the x-axis) against the number of inferences made by the
model (displayed on the y-axis). This analysis compares the BiSch, ResSch, and
AttSch methods —wherein each method assigns a single operation to a ma-
chine— against the RLCP method, which also permits multiple assignments
concurrently, as well as our MAS approach.

The graph illustrates that for methods employing a single assignment strat-
egy, the frequency of model usage increases linearly, akin to the number of oper-
ations. The RLCP approach displays a similar rate of increase. Nonetheless, our
MAS approach reveals a distinctly more efficient pattern, showcasing a signifi-
cantly less pronounced rise in model usage as the number of operations escalates.
This denotes a more scalable and efficient utilization of the model in complex
scenarios.

Execution Time Analysis. The final part of our analysis compares the ex-
ecution times. Focusing on RLCP [37], which is the only algorithm for which the
code was available for comparison, Table 3 displays the average execution times,
categorized by the size of the instances. Our approach not only solves instances
in less time but also, it is important to note, employs a more complex GNN
architecture. By potentially simplifying this architecture, we could achieve even
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Fig. 4. Comparison of the number of inferences between our approach, the DRL ap-
proaches in which a single operation is assigned, and the RLCP in the Taillard bench-
mark.

Table 3. Execution time for CPRL and MAS approaches in the Taillard benchmark.

Method 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20 Mean

RLCP 5.60 6.32 7.29 8.99 10.90 16.96 20.64 63.75 18.81
MAS 3.10 3.78 5.02 5.41 6.72 12.07 13.83 58.24 13.52

faster execution times. The recorded execution times align with those reported
for the RLCP approach.

6 Conclusions and future work

In this paper we have introduced a novel DL method for addressing the JSSP,
utilizing BC and GNNs. This approach effectively avoids the extensive explo-
ration of the solution space, which is a requisite in traditional RL algorithms,
enhancing performance. In addition, we have refined the modeling of the JSSP
to enhance efficiency. This is achieved by enabling the assignment of multiple
operations to machines in a single action, thereby reducing the frequency of
model usage, and by focusing on operations that are immediately relevant to
the scheduling process.

The effectiveness of our method has been tested on the Taillard benchmark.
Our approach not only surpassed several state-of-the-art DRL learning meth-
ods but also outperformed an enhanced metaheuristic approach, particularly in
larger instances. Additionally, the analysis performed to compare the execution
time and model uses showed that the execution times are lower than other DRL
methods and that there was a significant reduction in the number of model
usages.

Moving forward, our work will explore the application of this methodology
to various other scheduling problems to assess its adaptability and efficiency in
different contexts. Moreover, we will also explore the design of GNNs capable of
extracting information more efficiently in larger instances of the problem.
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Abstract. Predictive models are increasingly important in enhancing
decision-making processes. This study proposes an innovative approach
utilizing DAgger, an imitation learning algorithm, to iteratively train
a policy for addressing stochastic sequential decision problems. These
problems can be challenging, especially when expert input is costly or
unavailable. Our focus lies in crafting an effective expert within the
DAgger framework, drawing from deterministic solutions derived from
contextual scenarios generated at each decision point. Subsequently, a
predictive model is developed to mimic the expert’s behavior, aiding
real-time decision-making. To illustrate the applicability of this method-
ology, we address a dynamic employee call-timing issue concerning the
scheduling of casual personnel for on-call work shifts. The key decision
involves determining the optimal time to contact the next employee in
seniority order, allowing them to select a preferred shift. Uncertainty
arises from the varying response times of employees. The goal is to strike
a balance between minimizing schedule changes induced by early notifi-
cations or calls and avoiding unassigned shifts due to late notifications.
Unlike traditional predict-and-optimize approaches, our method utilizes
optimization to train learning models that establish connections between
the system’s current state and the expert’s wait time. We apply our al-
gorithm using data provided by our industrial partner to derive an op-
erational policy. Results demonstrate the superiority of this policy over
the current heuristic method in use.

Keywords: on-call scheduling · operations research · imitation learning.

1 Introduction

In operations research (OR), the integration of machine learning (ML) has led
to significant progress, improving decision-making through adaptive intelligence
and accurate predictions. Recent efforts from ML and operations research com-
munities to apply ML to solve stochastic optimization problems have notably
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increased. From the perspective of stochastic optimization, ML can enhance an
algorithm’s performance on a range of problem instances in two ways. Firstly,
it can substitute certain resource-intensive computations with rapid approxima-
tions. Secondly, it can help explore the decision space and learn the most effective
behavior (policy) from the experience. This paper is motivated by the desire to
use ML to alleviate the computational challenges in stochastic sequential deci-
sion problems.

A conventional method of using ML for stochastic optimization is the predict-
then-optimize approach, where ML’s predictive capabilities feed OR’s optimiza-
tion strategies. The predict-then-optimize framework initially utilizes ML mod-
els to predict the values of uncertain parameters based on available auxiliary
data. Subsequently, these point predictions are incorporated into downstream
optimization problems, transforming uncertain problems into more manageable
deterministic ones. Recently, progress has been made to train prediction models
that effectively utilize the structure of the downstream optimization problem to
reduce decision error rather than prediction error. Examples of such applications
can be observed in areas such as Retail Inventory Management [5], Healthcare
Resource allocation [6], and Logistics [11]. Furthermore [10] combines the learn-
ing and optimization, wherein ML models consider decision error in the learning
phase.

When one cares about discovering new policies, i.e., optimizing an algorithmic
decision function from the ground up, the policy may be learned by reinforce-
ment learning through experience. Agents accumulate knowledge over time by
experiencing various states, taking actions, and receiving feedback in the form of
rewards. The major reinforcement learning algorithms are approximate dynamic
programming and policy gradients.

An alternative approach involves employing ML to generate solutions or de-
cisions from input instances directly, a method commonly known as End-to-End
Learning [7], [8], [9]. This can be achieved through demonstrations, where an
expert illustrates the expected behavior to the ML model, a process called Imi-
tation Learning. In this paradigm, the learner focuses not on optimizing a per-
formance measure but on mimicking the expert’s actions. Imitation learning has
proven successful in diverse domains, including robotics, autonomous vehicles,
and game-playing, where human expertise directly contributes to model train-
ing. However, imitation learning presents challenges, notably the need for diverse
and representative expert demonstrations, which can be resource-intensive. Ad-
ditionally, issues such as distributional shifts and the potential impact of subop-
timal expert behavior on model performance must be addressed. Despite these
challenges, imitation learning has numerous applications in operations research,
demonstrating its versatility and effectiveness in various operational contexts
[12].

In the work by [1], a novel neural network architecture is employed to tackle
the Euclidean Traveling Salesman Problem. The authors train the model using
supervised learning, with pre-computed solutions to the traveling salesman prob-
lem serving as targets. Similar work can also be found in [13]. Another instance is
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seen in the research by [4], where a neural network is trained to predict solutions
for a stochastic load planning problem with a mixed-integer linear program-
ming formulation. The authors utilize operational solutions, specific solutions to
the deterministic version of the problem, aggregating them to provide tactical
solution targets for the ML model. In an approach similar to ours, [2] adopts
a prediction-based approach for online dynamic radiotherapy scheduling. They
propose an Integer Programming (IP) model to derive optimal offline schedules
from many instances. Subsequently, a model is trained, with the offline solution
serving as expert decisions in the learning process. In all the above cases, the
authors use offline deterministic solutions as an expert.

In this article, we propose an imitation learning approach to tackle the re-
cently identified Employee Call Timing Problem (ECTP) as discussed in[3]. Our
focus is scheduling on-call shifts for casual employees, addressing the dynamic se-
quential decision problem of formulating a policy for dispatching calls/notifications
to employees based on their seniority, rendering them eligible to select work
shifts. The challenge stems from the uncertainty surrounding the time it takes
for an employee to respond to system calls, leading to frequent replacements or
bumps governed by seniority rules. The primary goal is to minimize bumps while
ensuring the assignment of all shifts. In the paper [3], the authors present the
Employee Call Timing Problem as an NP-complete problem. Their approach
involves the development of dynamic policies through the aggregation of offline
solutions at each decision epoch. Notably, certain crucial components of the sys-
tem state are overlooked in their decision-making process. In contrast, a pivotal
difference in our study lies in including comprehensive state information to for-
mulate a policy and guide decision-making. Our contributions to the literature
can be summarized as follows:

1. Our study tackles the emerging Employee Call Timing Problem by employ-
ing ML-driven operating policies. The ML model is trained using an ex-
pert function derived from mathematical optimization, effectively emulating
the expert policy without imposing the computational burden during on-
line operations. We experiment with different expert functions in a DAgger
framework and choose the best one.

2. The results indicate that the machine-learned model outperforms a tuned
version of the existing heuristic policy in use while showing almost similar
performance to another heuristic in [3].

2 Problem Description

A new flexible on-call scheduling system is gaining popularity in North America.
This system is designed for use by casual (very dynamic) workers, such as part-
time students. They seek highly flexible, low-skilled jobs in the service industry
(e.g., hospitality, security, entertainment) as a supplemental source of income.
A Workforce Scheduler is tasked with scheduling L on-call shifts for a given
day within a planning horizon of H hours among M casual employees who
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prefer flexible schedules. These shifts are typically scheduled only 1 to 3 days in
advance. The M employees have seniority, and all are eligible for all L shifts. The
manager initiates an electronic system that sends notifications or phone calls to
employees at discrete periods within the scheduling horizon. An employee can see
the available set of shifts and select a shift when he or she receives a notification
or system call. From now on, we will refer to these actions as calls.

Upon receiving a call, employees are free to take their time before responding
to the system and accepting any available shifts not selected by other employ-
ees. Sometimes employees choose not to respond, indicating that they are not
available to work that day. The time between the system’s communication and
the employee’s response is called the response delay. Employees can choose any
unassigned shift. The system also allows senior employees to select shifts that
are available but occupied by junior employees, provided they respond within a
specified time interval known as the cutoff, denoted by D. This action results in
a schedule change, with the previously scheduled employee considered bumped.
This happens when a junior employee responds earlier than the senior. The cut-
off time starts when an employee is first called. If an employee responds after
the cutoff time, he or she can only choose from the remaining unselected shifts
and loses the advantage of seniority. Bumped employees are notified and can
choose from the remaining available shifts at the time of bumping. The schedul-
ing process is complete when all employees have responded or when the planning
horizon is reached.

The uncertainty within the system is a result of employee shift preferences
and delays in their responses. Tracking preferences is especially difficult. The
preferences are expected to change regularly depending on their personal lives.
In addition, since most of the employees are casual workers, they are constantly
joining and leaving their positions. Thus, predicting shift preferences is challeng-
ing given the inherent variability among individuals and the non-stationary na-
ture of these factors. Our industry partner, Merinio, which operates the system,
also does not explicitly collect employee preferences. It would be inconvenient to
ask the employees to rank their shifts daily. Therefore, to test our methodology
for this new problem, we proceed with the assumption of identical preferences.
This can even be seen as a worst-case analysis of the problem [3]. For example,
suppose there are 5 employees and they all respond in reverse order of seniority.
In that case, there will be a total of 10 (= 1+2+3+4) bumps where a bumped
employee will bump other employees due to the same preferences. Note that a
bumped employee is allotted the next shift in the preference order, potentially
causing more bumps. The response delays are uncertain, thus calling too many
employees early in the horizon can lead to multiple bumps if some senior em-
ployees take more time to decide. Conversely, calling too few employees to avoid
bumps may not allow enough time to get all responses within the planning hori-
zon, potentially resulting in unassigned shifts. Frequent schedule changes, or
bumps, can lead to frustration among junior employees and may cause them to
leave their jobs. Consequently, the system faces the challenge of determining the
optimal number of calls to make at any given time, given the current state of
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the system. This problem, formally known as the dynamic employee call tim-
ing problem (DECTP), revolves around determining the best times to initiate
employee calls.

2.1 Deterministic Formulation

We introduce the deterministic/offline formulation of the DECTP, under spe-
cific assumptions and simplifications. The response delays ri for each employee
i ∈ E are assumed to be known at the start of the planning process. Here,
E = {1, . . . , N} represents the entire employee set. Employee response delays
denoted as ri, are considered independent and identically distributed (i.i.d.)
random variables, following a shared probability distribution denoted as P. All
employees are eligible for all available shifts. Given the inherent complexity of
the problem and lack of explicit data, incorporating stochastic (data-mined)
individual preferences would significantly complicate the associated MIP when
the problem is known to be NP-hard. Hence we also assume that all employees
possess identical preferences, known at the commencement of planning. Conse-
quently, we operate assuming that shifts are ranked based on a unique criterion
such as monetary benefit. This also implies that when responding, an employee
i will consistently have the opportunity to select a shift ranked at least i in
their preferences. Due to operational constraints, a maximum of W simultane-
ous calls can be dispatched anytime. Table 1 provides the definitions for the
notations used in the problem.

Table 1. Model, Parameters, and Variables of the DECTP

Sets

E set of employees in the order of seniority with 1 being most senior

Parameters

H planning horizon
M total number of available employees
L total number of available shifts
D bump cutoff
W maximum number of calls sent per time epoch
R = [ri]i∈E set of response delays for employee i
δij response delay difference ri − rj between two employees i, j ∈ E
G reward for filling a shift

Variables

si time of system call to employee i ∈ E
yij binary variable to indicate if employee i ∈ E bumps j ∈ E
zi binary variable equal to 1 if employee i ∈ E responds within the horizon else 0
θ number of shifts vacant

We use the MIP formulation of [3] for the offline DECTP, given by the
equations (1)–(10). This formulation only decides when to call employees. It does
not explicitly assign shifts to employees. One must post-process the solution
obtained to know the shifts assigned to the employees. The objective in (1)
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minimizes the shift vacancies and the total bumps. We set G to a very high
value to guarantee complete shift assignment in the objective. The constraint in
(2) ensures that employee seniority is respected when making calls. (3) sets zi to
1 if an employee answers before the horizon, while (4) sets zi to 0 if an employee
answers after the horizon. (5) is a Big-M constraint that tracks a bump for any
pair of senior and junior employees. For a senior employee i to be eligible to bump
a junior employee j, the response delay for i must satisfy ri ≤ D and ri ≥ rj .
The optimization ensures that there are at most W calls at each decision epoch,
as per (6). Furthermore, (7) counts the number of vacant shifts. A solution to
the presented formulation yields a call schedule S = [si]i∈E .

(MIPDECTP−O) min Gθ +
∑
i∈E

∑
j∈E:i<j

yij (1)

Constraints

si ≤ sj ∀i, j ∈ E , i < j (2)

si + ri ≥ (H + 1)(1− zi) ∀i ∈ E (3)

si + ri ≤ H + ri(1− zi) ∀i ∈ E (4)

si − sj + δij ≤ δijyij + (H + ri)(1− zi) ∀i, j ∈ E , i < j, ri ≤ D, ri ≥ rj (5)

si + 1 ≤ si+W ∀i ∈ E , i+W ∈ E (6)∑
i∈E

zi + θ ≥ L (7)

yij ∈ {0, 1} ∀i, j ∈ E , i < j (8)

si ∈ R+ ∀i,∈ E (9)

zi ∈ {0, 1} ∀i ∈ E (10)

2.2 Sequential Decision Model

We now introduce an event-based sequential decision model for the DECTP. In
this model, the agent’s main decision is how long to wait before making the
next call. An event is therefore triggered if this waiting time is exhausted or an
employee responds to the system. However, the events are considered to occur
at discrete periods in the planning period.
Decision Epochs: Let K = {0, 1, . . . ,K} be the set containing all decision mo-
ments within the planning horizon H for some list of shifts denoted by L.
State Variables: Xk = (tk, x

n
k , x

s
k, x

r
k) gives the system’s state. Here xn

k is the
number of calls made until epoch k, and xs

k is a list of indicators for each employee
with a value of 1 if that employee has responded and 0 otherwise. xr

k = [xri
k ]i∈E

keeps track of the bump cutoff and is used to know if an employee can bump
others or not. tk refers to the time elapsed at epoch k.
Decision Variable: For every decision epoch k ∈ K, the policy decides the time
to wait ak ≥ 0 before calling the next employee in the seniority order given the
state Xk.
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Exogenous Information: In the DECTP, the callback from employees repre-
sents the exogenous information. Let Wk = {t̄k, x̄s

k} represent it. t̄k is the next
time of the next decision epoch. x̄s

k which is an array of indicators for each em-
ployee with a value of 1 if an employee made a callback in that epoch. Multiple
employees may call back at the same point due to discretization.
Transition Function: The transition function, XM (.) describes the transition
from state Xk to Xk+1 such that Xk+1 = XM (Xk, ak,Wk). This function cap-
tures the evolution of the system state based on the decisions made, the current
state, and the exogenous information received. More specifically,

■ tk+1 = t̄k.
■ xn

k+1 = xn
k + 1{ak=0}.

■ xs
k+1 = xs

k + x̄s
k.

■ xr
k+1 = [xri

k+1]i∈E such that

xri
k+1 =


0, if x̄si

k = 1,

D − 1, if xn
k < i < xn

k + 1{ak=0},

max(xri
k − (tk+1 − tk), 0), else.

The objective we want to optimize is defined by equation 1.

3 Methodology

In practical scenarios, people commonly reach out to a few employees and wait
for their responses before communicating with others. This sequential process
often leads to delays. However, there is an opportunity to improve efficiency by
proactively initiating additional calls based on expected responses from previ-
ously contacted employees. This proactive approach can save time in the long
run. Anticipatory actions present challenges for humans due to inherent uncer-
tainty, variability, and limited information, making it difficult to predict future
states. Analyzing complex probability distributions and considering numerous
interacting factors may overwhelm human cognitive capabilities. Hence, there
is a need for ML. The problem setting for the DECTP is characterized by its
parameters, including the number of employees M , the number of shifts to be
scheduled L, the planning period H, the distribution of employee response delay
P and the allowed response cutoff time D. An optimal offline calling schedule
can be derived using the DECTP formulation (MIPDECTP−O) for any instance
within a given setting.

Our approach involves using a learned model to predict employee responses
indirectly and strategically placing calls early. To accomplish this, we are seek-
ing an expert agent who acts perfectly in a given instance. However, since our
underlying problem is stochastic, seeking this expert is expensive. We propose
utilizing offline solutions with perfect future knowledge to guide the learning in-
stead. The aim is to identify patterns between system states and an intelligently
constructed target action based on offline solutions. An ML model is intended to
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capture and learn these patterns effectively. Once trained, the model can seam-
lessly integrate into real-time decision-making scenarios, offering a streamlined
and efficient approach to online decision-making.

3.1 Constructing training examples and training policies - DAgger

[14] introduced the DAgger algorithm that employs an iterative policy training
approach by adapting online learning principles that require access to an expert.
In each iteration, the primary classifier undergoes retraining using all previously
encountered states by the learner. This allows the learner to rectify past errors
at each iteration. Initially, the first policy, π0, is comprehensively instructed by
the expert or is at least a good heuristic policy. Subsequently, π0 is executed and
the configurations visited by the learner are observed. A new dataset is compiled
containing insights into rectifying the errors made by π0 using the expert. To
ensure information from both π0 and the subsequent policy, π1, is incorporated,
π1 is trained using a combination of the initial expert-only trajectories and the
newly generated trajectories.

The issue with directly using DAgger for dynamic sequential decision prob-
lems in operations research is that getting an expert is highly expensive even for
offline training. We rely on a pseudo-expert constructed using offline solutions
to replace the actual expert. This pseudo-expert is still expensive to compute
in real-time but is viable for offline training. We derive our main idea for the
pseudo-expert from the OCP policy in [3]. This policy is derived by first solv-
ing several instances offline using (MIPDECTP−O). Next, the optimal solutions,
the number of calls to be made at each epoch are aggregated using an aggrega-
tor function. The aggregator functions used are simple functions like mean, and
percentiles. We run DAgger algorithms for each of the aggregator functions and
the best-performing one is chosen among them. The algorithm used to generate
trajectories and train models is given by Algorithm 1.

During each iteration, we generate I sets of K-step trajectories. For each de-
cision epoch within a trajectory governed by a policy π, we additionally create n
contextual scenarios based on the current system state. This state encompasses
information on all employees contacted by the system and those who have se-
lected shifts. Consequently, for employees who have chosen shifts, we possess
precise data regarding their response delays. For those yet to respond to calls,
we have information on the time elapsed since they were contacted. Each scenario
generated is tailored to this contextual data.

Each of the n scenarios is then solved offline using (MIPDECTP−O) to obtain
a vector of optimal actions Āk for a given decision epoch. Note (MIPDECTP−O)
gives the optimal number of calls at each epoch. However, with this information,
one can then easily calculate the optimal wait time between calls. This effectively
provides us with n distinct experts for each scenario. Subsequently, an aggregator
function is applied to this vector to define a singular target âk. The state variable,
denoted by Xk, encapsulates comprehensive information. Our objective is to
distill this wealth of data into a fixed set of relevant features F , elaborated upon
in the results section. For each decision epoch within the planning horizon, a
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training example is constructed, represented as (Fk, âk), where Fk signifies the
input features and âk denotes the label indicating the expert action at epoch k.
Note that we skip the iteration subscript used in the algorithm to denote the
feature vector and the target. Ultimately, the best policy πi is selected based on
a set of validation instances.

Algorithm 1: DAgger algorithm to generate training examples and
train policy

1 Initialize D ← ϕ, π0 ← OCP
2 for i ∈ {0, . . . , itr} do
3 for j ∈ {0, . . . , I} do
4 Sample K-step trajectories using πi ;
5 for k ∈ {1, . . . ,K} do
6 Generate n scenarios ;

7 Get optimal actions for each scenario Āij
k = [āij

kl]l∈{1,...,n} using
MIPDECTP−O ;

8 Get the input feature vector F ij
k ;

9 Get target action āij
k = Agg(āij

k ) ;

10 end

11 Collect Dij = {(F ij
k , âij

k )} dataset of visited states and target actions ;
12 D ← D ∪Dij ;

13 end
14 Train policy πi+1 on D;
15 end

3.2 Using the ML model

The trained model is integrated into the prediction-based algorithm to facilitate
the call decision-making process. A decision epoch occurs when an employee
responds to the system or the wait time is exhausted. At each decision epoch, an
input feature vector is constructed based on the current state of the system. This
vector is then input into the trained model, which outputs the recommended wait
time at that epoch. If the wait time predicted is 0 then an employee i, next in
the seniority order has to be called. We immediately then run the same model
to get the wait time of employee i + 1 and so on. This incorporation of the
ML model allows for dynamically determining the optimal number of calls in
real-time based on the evolving system state.

4 Results

All experiments and models were implemented in Python, and GUROBI 10.0
was employed to solve the offline optimization problem instances. A maximum
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solving time of 4 minutes was set for each instance. GUROBI consistently demon-
strated efficient performance, often finding the optimal solution within seconds
for all instances. In rare cases, it required additional time to confirm optimality.

4.1 Data and Scenarios

In all conducted experiments, a consistent planning horizon H = 6 hours and
a fixed number L = 50 of available shifts were employed. A group of M =
150 employees, all possessing identical preferences, were available to fill these
shifts. We consider a cutoff of 3 hours. The problem setting is defined by I =
{N,M,L,P, D} for all our experiments. We set G = 200, that is the company
prioritises assigning all shifts. This value is considerably higher than the average
bumps by a single employee in the optimal offline solutions. The approach is
tested on real-world data from our industrial partner, collected from 2018-2020.
We cleaned the data and censored response delays of more than 1000 minutes
in the horizon. Response delays were then sampled for each employee from this
dataset to generate instances. Our experiments consider scheduling personnel
over a single day of operation with a six-hour planning period (H). The time
horizon is discretized into 1-minute intervals. Figure 1 shows the CDF plot for
the response delay distributions. Around 20% of the employees respond within
the first 5 minutes, while only 50% of them eventually call back. Thus majority
of the employees who respond, do so quickly.
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Fig. 1. Real World data Response Delay

A simulation model was developed to assess different policies. The real-world
response delay data was divided into train and test sets in a ratio of 80:20. The
train set was utilized to select the best-performing models, and then the test
set was used to assess performance. We also simulate the currently employed
policy by our industrial partner, a linear call-and-wait (CAW) policy that calls
a fixed number of employees η = 5 every τ = 1 time unit. Additionally, we at-
tempted to improve this heuristic policy (TCAW) through brute force search on
its parameters, simulating and testing all possible combinations. Furthermore, a
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call-all (CA) policy was implemented, which calls all employees at the beginning
as soon as possible, respecting the maximum call per decision epoch constraint.
This policy was included to emphasize its adverse impact on bumps. Finally,
we also compare our results with OCP from [3]. The OCP is a heuristic policy
based on the aggregation of pure offline solutions. This policy will make calls
if the current cumulative calls do not meet a dynamic threshold obtained from
offline solutions for each decision epoch. Figure 2 shows the calling profile of the
OCP across time. After making a few calls at the start the calling rate slows
down and is then later accelerated when the end of the planning period is close.
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Fig. 2. Calling profile

For the DAgger algorithm, we employ gradient-boosted decision trees (GBDT)
with XGBoost to build a learning model. Mean and percentile are used as ag-
gregator functions. The percentile functions utilized are spaced 5 units apart,
namely {45, 50, 55}. Such policies are referred to as percentile DAgger policies.
Our regression model predicts the waiting time before making the next call as a
continuous value, which is then rounded down to the nearest integer to obtain
a discrete number.

The features utilized in our models are detailed in Table 2. While most fea-
tures are self-explanatory, additional detail is provided for some. The cumulative
leftover cutoff represents the sum of the remaining cutoff time for all employ-
ees. Next, to obtain the delay buckets, we first divide the interval [0, D] into
six intervals to define delay buckets. For example, when D = 180, intervals such
as [(0, 10), (10, 30), (30, 60), (60, 120), (120, 150), (150, 180)] are used to create six
buckets. For any interval (l, u), the feature captures the count of employees whose
current delay usage falls between l and u.

OCP cumulative calls represent the fixed number of employees that would
have been called by the OCP policy until the current epoch. Meanwhile, the
to call now feature represents the number of employees waiting to be called
at the current epoch. This scenario occurs when the model suggests calling an
employee and immediately receives the decision for the next employee in the
seniority order. We enforce a restriction of not calling more than 2 employees,
similar to the OCP policy.
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Table 2. Set of features used to make predictions

Features

time remaining (tr) time since since last call made (tslc)
shifts vacant (sv) cumulative employees called (cc)
ratio of time remaining and shifts vacant (rtbysv) cumulative leftover cutoff (cl)
action at last epoch (la) delay buckets (db j)
OCP cumulative calls (cc ocp) number of response at last epoch (lr)
to call now (tc)

4.2 Results across aggregator functions

Table 4.2 displays the average cost across 500 test instances obtained for different
policies. Algorithm 1 is executed with various aggregator functions, gathering dif-
ferent operating policies while utilizing n = 9 scenarios to define the target. The
cost function remains consistent with the objective defined in MIPDECTP−O.
The primary observation indicates that the DAgger policy DT45 slightly outper-
forms the OCP in terms of cost. While, DT50, exhibits nearly identical perfor-
mance in cost compared to the OCP.

However,DTµ significantly underperforms compared to DAgger policies. This
observation is noteworthy, indicating that an average offline decision derived
from a set of contextual scenarios is notably inadequate for the stochastic prob-
lem. Both the current policy CAW and the CA policy demonstrate considerably
higher costs. Even a tuned version (TCAW) of the current policy exhibits notably
weaker performance than the percentile DAgger policies.

Figure 3 illustrates the bumps and vacancies for each policy. It is noticeable
that as the number of bumps increases within the various policies, the number of
vacancies decreases. The current heuristic (CAW) and call-all (CA) policies per-
form poorly in terms of bumps to ensure a complete shift allocation. Compared
to the OCP, DT45 results in fewer vacancies, which may be of greater interest
to decision-makers.

It’s also important to highlight the substantial value of stochastic information
in this problem. Solving 1000 instances offline under complete information, where
all uncertainty is known at the start of the planning period, yielded an average
of about 5.5 bumps with 0 average vacancies. Thus, if all response delays are
known at the start, nearly all bumps can be eliminated, and all shifts can be
scheduled.

Table 3. Cost for different policies

Policies

CA CAW TCAW OCP DTµ DT45 DT50 DT55

Cost 668.8 418.0 122.9 103.7 143.06 99.48 103.4 114.8
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4.3 Effect of number of scenarios

Next, we also study the effect of the number of scenarios (n) on the learning. We
try 3 different settings for n = {1, 5, 9} and present the results obtained from
the best policies. We see that the performance in five scenarios is not as bad
as compared to 9 scenarios. However, having only 1 scenario means there may
be vacant shifts. As noted in the previous subsection, the value of stochastic
information is high, and as a result having 1 scenario completely fails in ensur-
ing sufficient shift occupancy. The results show that the greater the number of
scenarios, the better the performance in terms of cost.

Table 4. Cost, Bumps, and Vacancy across different scenarios

Scenarios

1 5 9

Cost 275.9 119.5 99.4

Bumps 65.9 106.5 90.2

Vacancy 1.05 0.065 0.046

4.4 Calling Profiles

Figure 4 illustrates the distribution of cumulative calls and calling profiles when
vacancies for DT45 occur. Figure 4a presents the distribution of the cumulative
number of calls made at each discrete point in time. Upon comparison with
Figure 2, it becomes evident that the distributions are generally similar. The
distribution appears tightly packed, indicating the absence of divergent trajec-
tories.

Furthermore, Figure 4b displays the calling profile across 12 episodes featur-
ing empty shifts out of the 500 test scenarios. The trajectory reveals that the
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model indeed attempted to call all 150 employees. However, due to inadequate
responses within the allotted time, some shifts remained vacant.
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Fig. 4. Call profiles over the horizon for DT45

4.5 Feature importance

The graph in figure 5 displays the feature importance in the model. The y-axis
denotes the feature names, with lower positions indicating greater influence on
the output. The analysis reveals that features such as time remaining, cumulative
leftover cutoff delay, the ratio of time remaining to shift vacant, and the first
two delay buffers are the most important features.
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5 Conclusion

This paper introduces an imitation-based learning approach that uses the DAg-
ger framework to address the Employee Call Timing problem for casual em-
ployees, a sequential decision-making challenge aimed at minimizing schedule
changes (referred to as bumps) while ensuring sufficient staffing for all shifts.
Our learning-based approach is designed to imitate an aggregated target ob-
tained from offline solutions and dynamically make decisions based on the cur-
rent system state. The methodology is trained and evaluated using real-world
data from our industrial partner. The prediction-based approach shows reduced
average bumps without significantly increasing shift vacancies compared to the
existing heuristic practice. Our findings reveal that learned models perform al-
most as well as compared to OCP, a tuned heuristic based on offline solutions.
Further analysis has been also shown regarding the type of calling profiles ob-
tained. This approach seems promising and it seems that with more careful
tuning of ML models may be able to beat the heuristic OCP.
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Abstract. Sequential Monte Carlo (SMC) samplers are a family of pow-
erful Bayesian inference methods that combine sampling and resampling
to sample from challenging posterior distributions. This makes SMC
widely used in several application domains of statistics and Machine
Learning. The aim of this paper is to introduce a new resampling frame-
work, called Conditional Importance Resampling (CIR) that reduces the
quantization error arising in the application of traditional resampling
schemes. To assess the impact of this approach, we conduct a compara-
tive study between two SMC samplers, differing solely in their resampling
schemes: one utilizing systematic resampling and the other employing
CIR. The overall improvement is demonstrated by theoretical results
and numerical experiments for sampling a forest of Bayesian Decision
Trees, focusing on its application in classification and regression tasks.

1 Introduction

1.1 Motivation

Collecting and computing random samples from a posterior distribution is a
common challenge in Bayesian statistics. Sequential Monte Carlo (SMC) is one
of the most commonly used algorithms to tackle this issue, given its state-
of-the-art performance. Indeed, SMC samplers are an attractive choice to be
used across various domains, ranging from Bayesian Optimization [21], Machine
Learning [15], Target Tracking [16], to Image Processing [19]. The overall idea is
to employ Importance Sampling (IS) [6] to generate a population of N weighted
samples, and then use the resampling algorithm to address the degeneracy that
inevitably arises from repeated use of IS. This combination of IS and resampling
is indeed quite flexible. However, despite addressing the samples’ degeneracy ef-
fectively, the resampling step also introduces a quantization error to the weights.
This error poses a significant issue as it increases the variability of the resampled
set of samples. Therefore, we argue that an alternative resampling scheme that
reduces this quantization error could significantly produce better estimates.
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1.2 Related Work

The original idea of using resampling as a solution to the degeneracy of the sam-
ples in an SMC method was proposed in [5], and presents a resampling scheme
called multinomial resampling. The objective of resampling is to replace the cur-
rent population of N weighted samples with a new degeneracy-free population
of N samples by removing the samples that have low weights and replacing them
with copies of the samples with high weights (i.e. the healthy samples), in such
a way that the estimates after resampling remain unbiased.

Several alternative resampling schemes have been proposed since the original
multinomial resampling in [5]. Some of the most commonly used schemes are
stratified resampling [3, 8], and systematic resampling [1, 8]. These algorithms
achieve O(N) time complexity, use a multinomial distribution, and then divide
the population into strata or intervals, and use one or more random variables to
draw samples from these intervals. Another popular method is residual resam-
pling, presented in [12] and improved in [11]; this approach also takes O(N) steps
and separately considers the integer and decimal parts of the weights multiplied
by N to decide how many times each sample is to be copied.

In [2], another resampling scheme based on the knapsack problem is pre-
sented. While this alternative scheme offers improved accuracy compared to sys-
tematic resampling, it does so at the price of a much greater time complexity (up
to O(N2), depending on the size of the knapsack). This complexity appears to
have limited the adoption of this resampling algorithm and we do not therefore
consider it further herein.

The resampling algorithms that have O(N) complexity have been compared
in several studies [7, 9, 10], and the consistent conclusion is that systematic re-
sampling is to be preferred for its ability to maximize accuracy and reduce
the variance of the estimation. Note that systematic resampling can be per-
formed in parallel, achieving up to O(log2 N) parallel time complexity on both
shared [13,14,18,24] and distributed memory architectures [20,22,23].

Whichever resampling strategy is chosen, the weight of each member of the
new degeneracy-free population of samples will always be reset to 1

N . This in-
troduces a quantization error with respect to the samples’ weights before resam-
pling, which affects the quality of the estimation produced by the SMC sampler.

1.3 Contribution and Paper Outline

In this paper, we present Systematic-Conditional Importance Resampling (S-
CIR), an alternative O(N) resampling scheme for the SMC sampler. We first
prove theoretically that S-CIR achieves a lower quantization error compared to
systematic resampling. We then compare two versions of the same SMC sampler,
one using S-CIR and one using systematic resampling, in the context of sampling
Bayesian Decision Trees (DTs). The experimental results on a wide range of
publicly available datasets for supervised learning tasks show that by designing
a more sophisticated resampling scheme, our approach can significantly improve
performance.
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The rest of the paper is therefore organized as follows: Section 2 introduces
the SMC sampler algorithm. Section 3 first provides a high-level description of
any resampling scheme and then gives a brief overview of systematic resampling.
Section 4 describes our proposed resampling scheme in detail and proves its valid-
ity. Section 5 presents the numerical results on both classification and regression
problems. Section 6 concludes and discusses possible future improvements.

2 Sequential Monte Carlo Samplers

SMC samplers are Bayesian inference algorithms that generate N random sam-
ples from a posterior distribution of interest proportional to π(X,Y), i.e., the
product of the prior and the likelihood. Here, we briefly describe the algorithmic
details of SMC samplers. The reader is referred to [17] for further details.

The key idea behind SMC samplers is to use a combination of IS and resam-
pling for a total of K iterations, ∀k = 0, 1, . . . ,K−1. Each iteration generates or
updates, xk, a population ofN samples. The i−th sample, xi

k ∀i = 0, 1, . . . , N−1,
is also weighted by an importance weight, wi

k ∈ R, which represents how well
the sample is approximating the posterior distribution.

In order to initialize the samples at k = 0, the SMC sampler draws each
sample xi

0, from an arbitrary initial proposal distribution (or, simply, initial
proposal, the terms are used interchangeably), q0(·), from which it is easy to
sample. Then, each importance weight is initialized by computing the ratio be-
tween the posterior and the initial proposal computed in each sample. More
precisely, the samples and weights are initialized as follows:

xi
0 ∼ q0(·), ∀i = 0, 1, 2, . . . , N − 1, (1a)

wi
0 =

π
(
xi
0,Y

)
q0

(
xi
0

) , ∀i = 0, 1, 2, . . . , N − 1. (1b)

After the initialization step, each sample is updated by sampling from an-
other arbitrary proposal distribution (or, simply, proposal, the terms are used
interchangeably), q(·|xi

k−1), from which it is also easy to sample. Each weight is
updated given the previous weight. More precisely the samples and weights are
updated as follows:

xi
k ∼ q(·|xi

k−1), ∀i = 0, 1, 2, . . . , N − 1, (2a)

wi
k = wi

k−1

π
(
xi
k,Y

)
π
(
xi
k−1,Y

) q (xi
k−1|xi

k

)
q
(
xi
k|xi

k−1

) , ∀i = 0, 1, 2, . . . , N − 1. (2b)

The validity of (2) is proven in [17] and is omitted here for brevity.
After (2) each weight is normalized as follows:

w̃i
k =

wi
k∑N−1

j=0 wj
k

, ∀i = 0, 1, 2, . . . , N − 1, (3)
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such that
∑

w̃i
k = 1, i.e., 100% of the total probability. It is then possible to

estimate an expectation of interest as a weighted sum across the samples:

E[f (x)] =

∫
π (x|Y) f (x) dx ≈

N−1∑
i=0

w̃i
kf

(
xi
k

)
(4)

In general, the approach described up to this point provides useful estimates.
However, since the samples are generated from the proposal and not directly
from the posterior distribution of interest, the samples are subject to a numer-
ical error, called degeneracy. Degeneracy makes the variance of the normalized
weights diverge. More precisely, if not corrected, degeneracy makes all normal-
ized weights but one tends to 0, while a single sample’s normalized weight will
converge to 1. For obvious reasons, in this scenario, it is impossible to generate
meaningful weighted estimates of the posterior from the population of samples.
To correct degeneracy, the typical approach is to use a resampling algorithm. In
the next sections, we will provide details about systematic resampling, and our
proposed approach, called Conditional Importance Resampling (CIR). However,
any resampling scheme deletes the samples with low weights and replaces these
samples with copies of the samples with higher weights. Then, the weights are
reset to 1/N . In SMC samplers, resampling is not used in every iteration, but
only if needed. More precisely, the SMC sampler first measures the variance of
the normalized weights by computing the Effective Sample Size (ESS), as follows:

Neff =
1∑N−1

i=0

(
w̃i

k

)2 . (5)

Resampling is typically used if the ESS drops below an arbitrary threshold,
typically set to N/2. Then the SMC samplers repeats steps (2), (3), (5), and
resampling for K iterations. After K iterations, we can produce estimates based
on the final samples using (4).

3 Conventional Resampling Algorithms

In this section, we first give a general description of the strategy of any resam-
pling algorithm in Section 3.1. Then Section 3.2 provides details about systematic
resampling, the baseline method considered in the results presented in section 5.

3.1 General Description

The general idea behind a conventional resampling algorithm consists of per-
forming three steps: choice; redistribution; reset.

Step 1 - Choice. This step is utilized to infer the number of times each sample
needs to be replicated. To do this, we sample indices N times from a distribution,
gw̃(·) (a multinomial distribution), parameterized by the normalized weights, w̃.
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This sampling procedure will generate a vector, ncopies ∈ NN , such that

N−1∑
i=0

ncopiesi = N. (6)

Therefore, the i-th entry, ncopiesi, indicates how many times the i-th sample,
xi, is required to be replicated, meaning that those samples for which ncopiesi =
0 will be eliminated.

Step 2 - Redistribution. This step replicates each xi as many times as ncopiesi,
such that we get the new population of samples, xnew. This operation is described

Algorithm 1 Redistribution

Input: x, ncopies
Output: xnew, R

1: N ←size(ncopies)
2: i← 0
3: for j ∈ {0, 1, 2, . . . , N − 1} do
4: for copy ∈ {0, 1, 2, . . . ,ncopiesj − 1} do
5: xi

new ← xj

6: Ri ← j
7: i← i+ 1
8: end for
9: end for

by Algorithm 1. For example, if we have:

ncopies = [0, 0, 2, 0, 1, 4, 0, 1]

and we want to redistribute an array of samples, x, defined as:

x = [x0,x1,x2,x3,x4,x5,x6,x7],

then
xnew = [x2,x2,x4,x5,x5,x5,x5,x7],

and
R = [2, 2, 4, 5, 5, 5, 5, 7], (7)

where R is the vector of indices of the samples that have been replicated. This
vector will simplify the notation in Section 4.

Step 3 - Reset. In the final step, as mentioned in Section 2, the weights of
the new samples are reset to 1/N .

3.2 Systematic Resampling

Systematic resampling uses a statistically efficient mechanism for sampling N
times from a multinomial distribution to find ncopies. This is achieved by first
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sampling a uniform random variable:

u ∼ Uniform[0, 1), (8)

the algorithm then computes the cumulative density function of Nw̃, cdf ∈ RN ,
as follows:

cdf i = N
i∑

j=0

w̃j , ∀i = 0, 1, 2, . . . , N − 1, (9)

such that each particle, xi, is copied as many times as:

ncopiesi = ⌈cdf i + w̃i − u⌉ − ⌈cdf i − u⌉, (10)

where ⌈·⌉ is the ceiling function. The steps described by (8) (9) and (10) describe
a sampling procedure from a multinomial distribution gw̃(·), parameterized by
the normalized weights, w̃. After that, as previously mentioned, each sample, xi

is replicated ncopiesi times, and the weights are all reset to 1/N . These steps
are summarized in Algorithm 2.

After systematic resampling, unbiased estimates of the posterior can be cal-
culated as follows:

N−1∑
i=0

f
(
xi
)
w̃i ≈ 1

N

N−1∑
i=0

f
(
xi
new

)
. (11)

Algorithm 2 Systematic Resampling

Input: x, w̃, N
Output: xnew, wnew

1: ncopies ∼ gw̃(·), See Equations (8), (9), and (10)
2: xnew, R←Redistribution(x, ncopies), See Algorithm 1
3: wi

new ← 1
N
∀i = 0, 1, 2, . . . , N − 1

4 Proposed Approach

In this section, we describe our approach and prove its validity and its improve-
ment over the other conventional resampling approaches.

4.1 Conditional Importance Resampling

The approach we propose aims to reduce the quantization error that systematic
resampling introduces when all samples’ importance weights are reset to 1/N .

Definition 1 (Quantization error). Let x be a population of N samples,
where each sample, xi, ∀i = 0, 1, 2, . . . , N−1, is weighted by a normalized weight,
w̃i ∈ R. Let xnew and w̃new be the new population of N samples, and the new
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weights generated by any resampling scheme, which replicates x according to a
vector, ncopies ∈ NN , for which (6) holds. For each weight in w̃, the quantiza-
tion error, eiq, is computed as follows:

eiq =

{
0, if ncopiesi = 0,

|w̃i −
∑

xj
new=xi w̃j

new|2, if ncopiesi > 0,
(12)

where the term
∑

xj
new=xi w̃j

new is the total weight across all the copies of xi

being generated by resampling (and, for notational convenience, we assume that
the proposal is such that each value of xi is unique).

For example, if a sample xi has a weight such that Nw̃i = 3.1, systematic
resampling will generate either 3 or 4 copies of xi and do so such that the
expected number of copies (when averaging across multiple realizations of the
algorithm’s operation) is 3.1. However, in any single realization of the algorithm,
the total weight of all copies of xi would be quantized to either 3× 1

N , or 4× 1
N ,

and will never be equal to 3.1× 1
N . This quantization error will affect the final

estimate and its variance. Furthermore, this quantization error will only be zero
if the weights are all multiples of 1

N . Our approach to reducing this quantization
error is described in the text that follows.

The overall idea is to split the normalized weights (and the corresponding
samples) into two subsets, one containing small weights and another containing
big weights. We will also identify one of the big weights that we will divide
into two parts, a small weight and a weight that is still a big weight. In so
doing, we will ensure that the sum of the small weights is equal to an integer
multiple of 1

N . We will then use systematic resampling over the samples with
small weights. After that, we will use a novel resampling scheme over the samples
with big weights, which is designed such that it ensures that no quantization
error is introduced for this subset of samples. By doing this resampling, the
total quantization error over the full population of samples will be no larger
than systematic resampling alone. We now describe this process in more detail.

Step 1 - Preliminaries. We identify w̃p, which is non-zero for a subset of the
normalized weights, such that:

w̃i
p =

{
w̃i If w̃i < 1

N ,
0 If w̃i ≥ 1

N .
(13)

We refer to this vector as the vector of preliminary small weights.
Step 2 - Divide. As anticipated above, we want to perform systematic resam-

pling over the preliminary small weights in (13). However, given that systematic
resampling will result in a total weight that is a multiple of 1

N , we define the
notion of the (not preliminary) small weights to be such that the total of the
small weights is a multiple of 1

N . To achieve this, we compute, α ∈ [ 0N , 1
N ], the

fraction such that
∑N−1

i=0 w̃i
p+α is a multiple of 1

N : α is then an additional weight
that we seek to identify by dividing one of the weights that is not a preliminary
small weight. To identify the weight to divide, we look for an index j, such that



190 S Habibi et al.

w̃j > 2
N . This weight can be divided into a weight that is equal to α and a

weight that is greater than or equal to 1
N . We then define the small weights as:

w̃i
s =

 w̃i If w̃i < 1
N ,

α If i = j,
0 If w̃i ≥ 1

N and i ̸= j,
(14)

and the big weights as

w̃i
b =

0 If w̃i < 1
N ,

w̃j − α If i = j,
w̃i If w̃i ≥ 1

N and i ̸= j.
(15)

We note that if no weight higher than 2
N is found, we use systematic resampling

over the full input population of samples.

Step 3 - Systematic Resampling. We perform systematic resampling to resam-
ple Ns ≤ N samples from the samples with non-zero small weights, w̃s, where
Ns is computed as follows:

Ns = N
N−1∑
i=0

w̃i
s. (16)

We note that the weights, w̃s, input to systematic resampling need to be re-
normalized over the set of non-zero small weights. This step will generate Ns

samples, xs,new. We reset each weight, w̃i
s,new, to 1/N .

Step 4 - Conditional Importance Resampling. In this step, we want to re-
sample N − Ns copies of the samples with non-zero big weights, w̃b, without
contributing any quantization error in the context of the big weights. To achieve
this, we use a combination of two multinomial distributions to decide how many
times we replicate each sample with a big weight. We now explain this process
in more detail.

Step 4.1 - First Multinomial. We first re-normalize the weights w̃b, such that

each ŵi
b =

w̃i
b∑N−1

i′=0
w̃i′

b

. Then, we use systematic resampling to draw a random

vector θ ∈ NN−Ns comprising the empirical distribution of N −Ns draws from a
multinomial distribution, gŵb

(θ), parameterized by the normalized big weights,
ŵb. Therefore, we can compute q = θ

N−Ns
∈ RN , which represents the (total)

quantized normalized weights, i.e., the weights we would have if we had just used
systematic resampling to resample using ŵb. We note that all these quantized
weights will, by design, be non-zero and (equivalently) that N − Ns is greater
than or equal to the number of big weights (with the equality occurring in the
unusual circumstance that all the big weights have a weight of exactly 1

N ).

Step 4.2 - Second Multinomial. We then use systematic resampling again to
get a new vector, ncopies, representing the number of copies of the samples we
will generate from the samples with big weights. However, this second resampling
process will be parameterized by q, such that ncopies ∼ gq(·). Note that, since
every weight parameterizing q is a multiple of 1

N , systematic resampling will
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only ever produce one output given q, i.e. the realization of u in (8) has no effect
on ncopies.

Step 4.3 - Redistribution. We replicate each sample corresponding to a non-
zero w̃i

b as many times as ncopiesi by using Algorithm 1, such that we generate
a new set of N −Ns samples xb,new.

Step 4.4 - Reset. In this step, we reset the big weights. To simplify the
exposition, we re-introduce Ri as the index in the original population of samples
corresponding to the i−th member of xb,new. We then reset each new weight to:

w̃i
b,new = r̃i × N −Ns

N
, i = 0, 1, 2, . . . , N −Ns − 1. (17)

where each r̃i is a normalized version of ri which is itself defined based on IS
(since we know we sampled from q and not ŵb) as:

ri =
ŵRi

b

qRi =
ŵRi

b × (N −Ns)

θRi , ∀i = 0, 1, 2, . . . , N −Ns − 1. (18)

In Lemma 1, we show that (17) will allow us to preserve the original weights
wb in the expectation of the estimate, leading to no quantization error for the
N −Ns big weights as shown in Theorem 1.

Step 5 - Merge. Finally, we merge the outputs from Step 3 and Step 4, such
that: w̃new = {w̃s,new, w̃b,new}, and xnew = {xs,new,xb,new}.

The steps above are summarized in Algorithm 3 which, as previously men-
tioned in the introduction, we name Systematic-Conditional Importance Resam-
pling (S-CIR). To be valid, Algorithm 3 must be unbiased. The next lemma and
theorem prove not only that our approach is unbiased but also that it has a
variance caused by quantization that is never greater than that introduced by
systematic resampling. We note that S-CIR achieves O(N), as it consists of two
steps (one for ws and one for wb) each of which performs O(N) operations.

Lemma 1. Let x be a population of N samples, and let w̃ ∈ RN be the set of the
normalized importance weights associated with the samples. By using Algorithm
3, it is possible to generate a new population of N samples such that the estimate
remains unbiased.

Proof. To prove that S-CIR is unbiased it is enough to show that the expectation
of estimated value after resampling is the same as the estimated value before.
Indeed, we seek to prove that:

N−1∑
i=0

f(xi)w̃i = E

[
N−1∑
i=0

f(xi
new)w̃

i
new

]
. (19)

Given that Algorithm 3 first splits the weights into w̃b and w̃s, we can start by
expressing the estimate before computing Algorithm 3 as follows:

N−1∑
i=0

f
(
xi
)
w̃i =

N−1∑
j=0

f
(
xj

)
w̃j

s︸ ︷︷ ︸
(I)

+
N−1∑
n=0

f (xn) w̃n
b︸ ︷︷ ︸

(II)

. (20)
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Algorithm 3 Systematic Conditional Importance Resampling

Input: x, w̃, N
Output: xnew, w̃new

1: for i ∈ {0, 1, 2, . . . , N − 1} do

2: w̃i
p ←

{
w̃i If w̃i < 1

N

0 If w̃i ≥ 1
N

3: end for
4: Find (any) j s.t. w̃j > 2

N

5: if j is not found then
6: xnew, w̃new ←Systematic Resampling(x, w̃, N), See Algorithm 2
7: return
8: end if
9: α← ⌈

∑N−1
i=0 w̃i

s⌉ −
∑N−1

i=0 w̃i
s

10: for i ∈ {0, 1, 2, . . . , N − 1} do

11: w̃i
s ←


w̃i If w̃i < 1

N

α If i = j
0 If w̃i ≥ 1

N
and i ̸= j

12: w̃i
b ←


0 If w̃i < 1

N

w̃j − α If i = j
w̃i If w̃i ≥ 1

N
and i ̸= j

13: end for
14: Ns ← N

∑N−1
i=0 w̃i

s

15: for i ∈ {0, 1, 2, . . . , N − 1} do
16: ŵi

s ←
w̃i

s∑N−1
j=0 w̃

j
s

17: end for
18: xs,new, ŵs,new ←Systematic Resampling(x, ŵs, Ns), See Algorithm 2
19: for i ∈ {0, 1, 2, . . . , Ns − 1} do
20: w̃i

s,new ← 1
N

21: end for
22: for i ∈ {0, 1, 2, . . . , N − 1} do
23: ŵi

b ←
w̃i

b∑N−1
j=0 w̃

j
b

24: end for
25: θ ∼ gŵb

(·), See Equations (8), (9), and (10)
26: for i ∈ {0, 1, 2, . . . , N − 1} do
27: qi ← θi

N−Ns

28: end for
29: ncopies ∼ gq(·), See Equations (8), (9), and (10)
30: xb,new, R←Redistribution(x, ncopies), See Algorithm 1
31: for i ∈ {0, 1, 2, . . . , N −Ns − 1} do

32: ri ← ŵRi

b

qRi ,

33: r̃i ← ri∑N−Ns−1
j=0 rj

,

34: w̃i
b,new ← r̃i × N−Ns

N
,

35: end for
36: xnew ← {xs,new,xb,new}
37: w̃new ← {w̃s,new, w̃b,new}
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Since we adopt two resampling schemes, one for the non-zero values of w̃s,
and one for the non-zero values of w̃b, we split the rest of the proof into two
parts. We use systematic resampling for the non-zero values of w̃s, such that the
first term (I) of the right hand-side in (20) is:

N−1∑
j=0

f
(
xj
s

)
w̃j

s =
Ns

N

N−1∑
j=0

f
(
xj
s

)
ŵj

s =
Ns

N
E

[
1

Ns

Ns−1∑
i=0

f(xi
new)

]
, (21)

where the fraction immediately preceding the expectation is the result of the
sum of the small weights being less than unity. The proof of the remainder of
(21) is provided in [5], and here is omitted for brevity.

For the term (II) in the right hand-side of (20), we consider IS conditional
on the value of θ such that we pose an estimate of a function of x, by averaging
over samples of θ, as follows:

N−1∑
n=0

f (xn) w̃n
b =

N −NS

N

∫
gŵb

(θ)
N−1∑
n=0

f (xn) ŵn
b dθ

=
N −NS

N
E

[
1

(N −Ns)

N−1∑
n=0

θnf (xn)
ŵn

b

θn/(N −Ns)

]
. (22)

Note that, by splitting the weights into small and big weights, we have been able
to only apply IS in contexts where the proposal, q, is non-zero irrespective of the
value of θ. This ensures that using IS results in an estimator with finite variance,
which cannot be ensured if IS is also applied to remove the quantization error
of the small weights, as their corresponding θ might be 0.

After Step 4 - Importance Resampling, the new samples, xb,new, will be re-
sampled from x, such that the expectation of the estimate in (22) would result
in the following equality:

N−1∑
n=0

f (xn) w̃n
b =

N −Ns

N
E

 1

(N −Ns)

N−Ns−1∑
j=0

f
(
xj

) ŵj
b

θj/(N −Ns)

 . (23)

Since for any random variables X1, X2, we have E[X1 +X2] = E[X1] + E[X2],
(21) and (23) prove (19), i.e., that Algorithm 3 is unbiased. Also, (23) shows
that the total of the weights, w̃i

b, for each big weight (in the original population)
is preserved by the resampling.

Theorem 1. Let x be a population of N samples, which we want to resample
according to normalized importance weights, w̃ ∈ RN . The quantization error
introduced if using S-CIR (Algorithm 3) can never be worse than the quantization
error introduced if using systematic resampling (Algorithm 2).

Proof. For obvious reasons, the quantization error for S-CIR associated with
the small weights, w̃s, is identical to the quantization error for systematic re-
sampling, as w̃i

s,new = 1
N , ∀i = 0, 1, 2, . . . , Ns − 1, as is the case in systematic

resampling.
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Lemma 1 shows that the big weights before resampling are preserved after
resampling, meaning that the quantization error for these weights is 0.

Therefore, since Ns ≤ N , we have:

N−1∑
i=0

eiq,s−cir ≤
N−1∑
i=0

eiq,sr, (24)

where eiq,s−cir and eiq,sr are, respectively, the quantization errors on the i-th
weight when using S-CIR and systematic resampling. Hence, the two errors,
eiq,s−cir and eiq,sr, can only be equal when Ns = N or when there is no weight

such that w̃j > 2
N : in these cases S-CIR and systematic resampling are identical.

5 Numerical Results
In this section, we compare two SMC samplers differing only in the resampling
scheme being used; one SMC sampler uses systematic resampling and the other
SMC sampler uses S-CIR. The results are provided for an exemplary discrete
model, which is designed to sample a forest of N Bayesian Decision Trees (DTs)
for supervised learning tasks (classification and regression). To provide context,
we first briefly describe SMC DTs, and then we provide and discuss the results.

5.1 Model Description

Bayesian DTs represent a powerful framework for probabilistic modeling and
decision-making. The main characteristic of Bayesian DTs is the incorporation
of uncertainty by assigning probability distributions to both the observed data
and model parameters, allowing for a more sophisticated and accurate repre-
sentation of the uncertainty compared to deterministic DTs. The nodes of the
tree specify the features used for the decision made at the node, and the edges
represent possible outcomes, with conditional probability distributions associ-
ated with each datum then deduced by descending the tree. For this paper, we
consider both classification and regression problems. For more information and
specifications about the model we use, the reader is referred to [4].

5.2 Results

As described in Section 4, our main objective is to show that the S-CIR reduces
the quantization error that systematic resampling introduces when all the re-
sampled weights are set to 1/N . To demonstrate the accuracy improvement of
the S-CIR compared to systematic resampling in supervised learning problems,
we conducted experiments on eight publicly available datasets (five datasets for
classifications and three for regression) from the UCI Machine Learning Repos-
itory3: an overview of the datasets is provided in Table 1.

We have run the contesting algorithms for 10 MC runs, each time for 10
iterations sampling N = 150 DTs per iteration for all datasets and reported the

3 https : //archive.ics.uci.edu/
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Name Type Number of Records Feature Count Feature Types

Glass C 214 9 R
Balance Scale C 625 4 C
Liver Disorders C 345 5 C,I,R
Arrhythmia C 452 279 C,I

Heart C 303 13 C,I
Forest fires R 517 12 R

Synchronous Machines R 557 5 R
Student Marks R 145 31 I

Table 1: Datasets considered, including type ((C)lassification or (R)egression)
and feature types ((R)eal-valued, (I)nteger and (C)ategorical).

accuracy (and associated runtime) for the output of iteration K = 10. We have
calculated classification accuracy for classification datasets and Mean Squared
Error (MSE) for regression datasets. Experiments have shown that 10 iterations
are enough for the algorithm to converge and produce acceptable predictions.
The numerical results are shown in Table 2a for classification, and in Table 2b
for regression, and represent averages over the MC runs.

The improvement in classification accuracy that results from using S-CIR
ranges from 0.23% (for Arrhythmia) to 2.03% (for Balance Scale) with an average
improvement of 1.27%. In the context of the regression tasks, the percentage
reductions in MSE resulting from using S-CIR are 4.4%, 1.4%, and 2.1% for the
Forest Fires, Synchronous Machines, and Students Marks datasets, respectively:
the average percentage improvement in MSE is 2.6%. We also note that the run-

(a) Classification Results

Dataset Method Accuracy Time

Glass
S-CIR
SR

63.23%
62.30%

10.63s
10.27s

Balance
Scale

S-CIR
SR

74.68%
72.65%

4.88s
4.58s

Liver
Disorder

S-CIR
SR

62.01%
60.57%

6.05s
5.08s

Arrhythmia
S-CIR
SR

59.62%
59.39%

15.56s
15.55s

Heart
S-CIR
SR

75.43%
73.70%

4.97s
4.66s

(b) Regression Results

Dataset Method MSE Time

Forest
Fires

S-CIR
SR

5440.94
5694.34

26.82s
20.16s

Synchronous
Machines

S-CIR
SR

19486.85
19764.61

8.37s
8.01s

Student
Marks

S-CIR
SR

8.67
8.86

2.76s
2.60s

Table 2: Results for Supervised Learning Tasks. In the tables, SR stands for
(S)ystematic (R)sampling. The algorithms are run on a Intel Core i7-10875H.

time of both methods is roughly the same, as S-CIR and systematic resampling
take O(N) steps. To sum up, the experiments have shown that implementing a
more sophisticated resampling scheme helps improve the overall performance of
SMC when sampling DTs for all classification and regression tasks considered.
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6 Conclusion
In conclusion, this paper presents a novel resampling strategy, S-CIR, applica-
ble to all SMC methods. The proposed approach reduces the quantization error
relative to the pre-existing state-of-the-art, systematic resampling. We applied
the novel resampling scheme to SMC DTs to show the performance improve-
ment in real-world scenarios. Relative to state-of-the-art results on supervised
learning tasks, SMC DTs’ performance is significantly improved by using the
novel resampling algorithm: Our improved resampling scheme has experimen-
tally shown an average 1.27% improvement in classification accuracy problems
and an average reduction in MSE of 2.6% in the context of regression problems.
The implication of the theoretical and empirical results is that improvements
are likely in the many other contexts where SMC methods are applied.

As well as quantifying this benefit in contexts beyond those considered herein,
future work should include the exploration of alternative strategies for further
reducing the errors introduced by resampling. Ideally, any such novel scheme
should be synergistic to the novel resampling technique described herein.
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Abstract. The combination of mathematical programming and heuris-
tics is known as matheuristic. Constructing a matheuristic comprises
two steps: First selecting its components, second parameterizing those
components. The construction of a matheuristic is often done manu-
ally by experts, which leads to expensive engineering processes. To bring
matheuristics into practice, their construction should be automated. In
this paper a matheuristic construction approach is proposed to close this
gap. The approach is based on instance space analysis for the selection
and Bayesian optimization for the parametrization of the matheuristic.
First computational studies show, how Bayesian optimization can be
used to parameterize an original heuristic.

Keywords: Matheuristic Construction · Instance Space Analysis ·

Bayesian Optimization · Mixed Integer Programming.

1 Optimizing the Construction of Matheuristics

Electroplating plants give rise to hoist scheduling problems (HSPs), which are
proven to be NP-complete. HSPs can be modelled as Mixed Integer Programs
(MIPs). However, for real-world sized problems monolithic MIPs cannot be
solved by standard solvers in reasonable time. A widely applied solution are
original heuristics, which reduce the computational cost of solving HSPs by de-
composing the monolithic into a polylithic model. The combination of mathe-
matical programming with heuristics, e.g. metaheuristics or original heuristics, is
known as matheuristic. In our research, we focus on matheuristics, that combine
an MIP model with original heuristics and a standard solver. The individual
components already exist in literature in several variants.

Every plant has individual characteristics resulting in a multitude of di�erent
HSPs. Selecting appropriate matheuristic components with their corresponding
parametrization i.e. constructing a matheuristic, is a time-consuming task often
done manually by experts. Usually, only one matheuristic is constructed and used
for di�erent HSPs. However, speci�c matheuristic component combinations with
speci�c parametrizations i.e. matheuristic setups, may be more appropriate for
individual HSPs. To bring matheuristics into practice an automated engineering
process to adapt a matheuristic with low e�ort to new instances, is needed. [1]
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The construction consists of two consecutive steps: First the selection of the
matheuristic components (MIP model, original heuristic, and standard solver);
second the parameterization of the selected original heuristic and the standard
solver.

In the �rst step all hyperparameter are categorical. For example, possible
parameter values for the component standard solver are e.g. CPLEX, Gurobi or
Xpress. Therefore, the �rst step corresponds to an algorithm selection problem
since no ordering of the possible values exists. Additionally, the parameters of
the �rst step can depend on each other. For example, in hoist scheduling not all
combinations of MIP models and original heuristics are feasible.

In the second step, the hyperparameters comprise the parameters of the se-
lected standard solver and original heuristic. These parameters can be of di�erent
types (continuous, integer, ordinal, categorical). They can also depend on each
other or be subject to constraints. While several methods for parametrizing stan-
dard solvers already exist, the parameters of original heuristics are usually ad-
justed manually or with grid search. In general, two con�icting objectives occur:
First minimizing computational cost and second maximizing solution quality.
The �rst objective corresponds to the time the standard solver needs to solve
the MIP model. The second objective corresponds to the objective of the un-
derlying optimization problem e.g. minimizing makespan. Both objectives are
functions of the hyperparameters of the matheuristic. They can be evaluated
pointwise but no prior knowledge about the objective functions like gradients
can be obtained.

2 Algorithmic Setup

In the arti�cial intelligence (AI) domain various methods for the two steps of se-
lecting and parametrizing algorithms were studied in the last years and applied
e.g. to metaheuristics and neural networks. One successfully applied method
for algorithm selection is Instance Space Analysis (ISA) [3], for algorithm
parametrization Bayesian Optimization (BO) is successfully applied [4].

Since constructing matheuristics also comprises algorithm selection and para-
metrization problems, identical methods as used in the AI domain, may be ap-
plicable. To the best knowledge of the authors no application of ISA or BO to
matheuristic construction have been investigated in literature.

2.1 Selecting the Matheuristic Components

For the �rst step of the matheuristic construction, namely the selection of com-
ponents, ISA is appropriate since all hyperparameters are categorical. Di�er-
ent matheuristic components exploit di�erent characteristics of the problem in-
stances. Therefore, with ISA the performance of the matheuristic components
is not evaluated on average over a set of instances but evaluated based on the
instance characteristics. This approach is probably better with regard to the two
objectives minimizing computational cost and maximizing solution quality.
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2.2 Parameterizing the Matheuristic Components

After selecting the matheuristic components, the original heuristic must be pa-
rameterized. In contrast to grid or random search, BO e�ciently samples the
solution space and is considered as the state of the art for algorithm parametriza-
tion. As mentioned, the hyperparameters of the original heuristics can be of dif-
ferent types. However, BO in its original form is intended to parameterize solely
continuous hyperparameters, but extensions of the BO, considering integer and
categorical parameters, are studied as well. With reference to these studies the
authors expect that the BO can be used to parameterize the original heuristics.
Nevertheless, it is expected, that the BO takes too much time for real-world-sized
problems, if the BO is performed from scratch for every new instance. Further
research directions like transfer learning, multi�delity and parallel BO should be
taken. [2]

3 Computational studies on Bayesian Optimization to

parameterize Original Heuristic

In �rst computational studies the application of BO to the parametrization of
an original heuristics at the second step are studied by Hildebrandt and Sand
[2]. Di�erent tools for BO exist: The python package SMAC3 was used, since it
supports di�erent acquisition functions and surrogate models and also supports
di�erent types of hyperparameters, as well as conditions and constraints on hy-
perparameters. The implementation is structured as follows: SMAC3 executes
the BO by calling the matheuristic, comprising the original heuristic, MIP model
and standard solver; The original heuristic manages the solution process of the
MIP model implemented with Pyomo and calls the standard solver. The BO uses
a Gaussian Process as surrogate model and the expected improvement as acqui-
sition function. This setup is the standard con�guration for BO. However, other
BO setups should be investigated in further studies as well. The time limit and
the number of evaluations of the BO are restricted. The BO terminates after 16
retries of searching new values of the hyperparameters. The computational stud-
ies involve three small HSPs. The original heuristic consists of a rolling horizon
heuristic combined with an improvement heuristic. Three di�erent integer-valued
hyperparameters of the original heuristic are parameterized.

A complete enumeration of all possible parameter combinations serves as
reference: Both objective values, computational cost and solution quality, are
obtained. For the BO those objectives are combined into a single weighted sum
using the inverse mean of the a posteriori calculated points from the complete
enumeration, as weights.

For two HSPs the BO �nds that it is better to solve the monolithic rather than
the polylithic model. For the third HSP the BO �nds the optimal con�guration
of the hyperparameters evaluating 25% of all points. Detailed information on
the algorithmic setup can be found in [2].



Instance Space Analysis for Matheuristic Construction 201

4 Instance Space Analysis for selecting Bayesian

Optimization Hyperparameters

The BO, which is used to parameterize the original heuristic at the lower level,
also possesses hyperparameters itself. For example, the surrogate model, the
acquisition function and the acquisition function optimizer must be selected.
Besides using ISA to select the components of the matheuristic, it could also be
used outside the matheuristic construction at a higher level to set up the BO.

Based on the studies on BO for the parameterization of original heuristics
described in section 3, the application of ISA to BO will be studied. The original
heuristic is parameterized using the following algorithmic setup: ISA is used to
select the components of the BO for the instance at hand; BO parameterize the
original heuristic for the instance at hand; the original heuristic manages the
solution process and solves the underlying optimization problem using the MIP
formulation and the standard solver.

Like for the BO, again two con�icting objectives must be handled: computa-
tional cost and solution quality. In real-world applications a limited amount of
time is available. Therefor in a �rst approach, the time limit of the BO is also set
to a prede�ned value. By doing so, the computational cost is handled as a con-
straint and the solution quality can be used as a single objective to evaluate the
performance of a speci�c BO setup. To ensure that enough evaluations during
one BO can be conducted, the time limit of the standard solver for solving the
underlying optimization problem (here HSP) should be set according to the time
limit of the BO. One possible solution is to de�ne the number of evaluations i.e.
runs of the matheuristic, used by the BO, and calculate the time limit for solving
one HSP by dividing the time limit of the BO by the number of evaluations.

The research on how ISA and BO can be used to automate the matheuristic
construction tend to shift the human interaction to a higher level. This would
simplify the engineering of matheuristics for the automation vendor and therefore
advance the application of matheuristics in practice.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. E�ective evaluation of learnt clauses is crucial for the per-
formance of con�ict-driven clause learning SAT solvers. We propose a
novel learnt clause evaluation method using the information of the graph
structure of SAT problem, called weight to adjacent node-based clause
evaluation (WANCE). The graph representation of SAT problems is rec-
ognized as useful for understanding the structure of the problems, and
it is known that the e�ciency of SAT solvers is related to this structure.
WANCE utilizes the problem structure of the input CNF, which can
identify valuable clauses independently of their search, contrary to exist-
ing methods (e.g., literal block distance, LBD) reliant on a search tree
state for their evaluation values. First, to reveal the relationship between
learnt clauses and graph structure in more detail, we investigated the im-
pact of a learnt clause on the graph structure through correlation analysis
with its quality measured by LBD. Findings indicated that high-quality
clauses had heavy edges to their adjacent variables on the graph, en-
hancing their propagation potential. Second, assuming that that feature
implied clause quality, we implemented WANCE using the feature as the
primary metric for clause management. The results of performance eval-
uation experiments demonstrated that a solver equipped with WANCE
outperformed those using LBD-based methods. Our �ndings underscore
the potential of utilizing the graph-structural properties of SAT problems
for clause evaluation.

Keywords: SAT solver · Structure of SAT · Learnt clause

1 Introduction

Con�ict-driven clause learning (CDCL) satis�ability (SAT) solvers are widely
used to solve SAT problems owing to their e�cacy in addressing industrial SAT
problems derived from real-world problems. Clause learning is a key component
of a CDCL solver, enabling it to learn from failures. These learning results are
stored as learnt clauses. Modern solvers generate a vast number of learnt clauses;
however, it is ine�cient to retain all of them. Therefore, evaluation method
to determine ones that should be deleted is important for the performance of
solvers. �Activity� (or the clause version of a variable state independent decaying
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sum) [23], one of the evaluation metrics, gauges how often a clause is used in the
con�ict and its resolution; Clauses with a higher frequency of use are evaluated
as more valuable ones. �Literal block distance (LBD)� [5], widely used in many
solvers owing to their high performance, measures the number of literal blocks
in the learnt clause. LBD evaluates substantially shorter clauses by treating
variables used in a decision and its associated propagation as a single variable
(literal block).

We propose a new method for evaluating learnt clauses called weight-to-
adjacent-node-based clause evaluation (WANCE), utilizing a graph-structural
property inherent to the conjunctive normal form (CNF) of the input SAT
problem. In existing methods (e.g., Activity and LBD), the evaluation value
of a learnt clause varies depending on the state of the search. While this has the
advantage of obtaining an optimized evaluation value for that search, the eval-
uation values may be inappropriate in environments with di�erent search states
(e.g., when a period of time has passed after the evaluation and the search en-
vironment has changed, or when clauses are shared between parallel searches
where each worker employs a di�erent search strategy). Our proposal method
can identify valuable clauses independent of the search state and thus has the
potential to perform better, at least under certain conditions. Application SAT
problems derived from real-world problems have remarkable structural proper-
ties [1] compared to the randomly generated ones. The di�erence was observed
by quantifying the structural properties such as centrality, treewidth, or modu-
larity, which are usually on the variable incident graph (VIG). Nodes of VIG are
variables, and edges connect variables in a clause with some designated weight.
The relationship between the degree of the graph-structural properties and the
runtime of the solver (performance) is also known [12]. In addition, several stud-
ies have addressed the relationship between the quality of clauses and structural
properties of SAT problems. For example, the LBD value correlates to the num-
ber of communities to which variables in clause belongs [24], and clauses with low
LBD values (thus valuable clauses) increase the modularity value of the graph,
that is, these clauses reinforce the community structure of graph[14].

First, we conducted a correlation analysis to reveal the relationship between
learnt clauses and graph structure in more detail. Given a learnt clause, we
quanti�ed the implication of a clause on the graph structure using properties such
as the clause's connectivity, treewidth, and the weights of edges within variables.
Then, we performed a correlation analysis between them and the quality of the
clause measured by LBD. This analysis aimed to examine the implication of
valuable clauses on the graph structure. Results indicated that valuable clauses
tend to have heavy edges to their adjacent variables on the graph, indicating that
they have higher probability to be used in propagation. Further, the experiments
revealed that this metric predicts LBD's minimum value (updated value) more
accurately than its maximum value. Therefore, using this property, we propose
WANCE because we assume that this feature can intrinsically evaluate valuable
clauses, and is computationally e�cient among the structural features.
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Next, we conducted performance evaluation experiments using this feature
as the primary metric for clause evaluation. Experimental results veri�ed the
e�ectiveness of our proposal method in the clause deletion task in sequential
solvers.

The contributions of this study are listed below:

1. Through correlation analysis, we extensively investigated the properties of
learnt clauses in the graph that valuable clauses have.

2. We revealed that the quality of clauses measured by LBD relates to the
weight of edge to adjacent variables and, thus, their propagation probability.

3. We demonstrated that the clause evaluation method utilizing the structure
is e�ective in the task of clause deletion in sequential solvers.

The remainder of this paper is organized as follows: Section 2 introduces
SAT solvers and their techniques. Section 3 presents our observations of the
correlation analysis. Section 4 proposes the implementation of WANCE. Section
5 presents the results of performance evaluation. Section 6 discusses related work,
and Section 7 summarizes the paper and suggests future research directions.

2 Preliminaries

2.1 SAT Problem and SAT Solver

The propositional SAT problem involves determining if a given propositional
logic formula can be satis�ed by a Boolean value assignment of variables. The
formula is provided in conjunctive normal form (CNF), wherein variables are
combined into clauses with disjunctions, and the clauses are combined with con-
junctions. A formula is in CNF if it has the form (C1 ∧C2 ∧ · · · ∧Cm), where Ci

represents a clause. Each clause is a disjunction of literals (Li,1∨Li,2∨· · ·∨Li,n),
where Li,j represents a literal in clause Ci. An example of a CNF formula is
(x ∨ y) ∧ (¬y ∨ z). Here, (x ∨ y) and (¬y ∨ z) are clauses, and x, y, ¬y, and z
are literals where y and ¬y represent the positive and negative forms of variable
y. If at least one valid Boolean assignment of variables satis�es all clauses, the
formula is satis�able (SAT); otherwise, it is unsatis�able (UNSAT).

SAT solvers are programs used to solve SAT problems. SAT is a typical NP-
complete problem; no polynomial-time algorithm is believed to solve all SAT
instances. Despite this worst-case complexity, modern SAT solvers are remark-
ably e�cient and can handle large and complex instances. Therefore, they are
used to solve real-world problems such as computer-aided theorem proof [13] and
binary neural network veri�cation [8] encoded as SAT problems. Most modern
SAT solvers are CDCL SAT solvers.

2.2 Clause learning

In SAT solvers, learning refers to deriving new clauses for the formula to avoid
revisiting unsatis�able assignments. The learnt clause, the learning output, is an
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inference derived from the original SAT instance represented as a clause. The
following is the process of SAT solver search: The solver performs a search by
making an assumption that assigns a Boolean (True or False) value to a variable
called a decision. Subsequently, the solver assigns the Boolean values of other
variables as the logical consequence of the decision, called propagation. If the
decision is incorrect, an inconsistency occurs during the propagation, referred
to as con�ict. Then, the solver analyzes the con�ict's root cause and learns the
cause's counter-examples as clauses (learnt clause) to avoid the same incorrect
assumptions and con�icts in subsequent searches. Finally, the solver cancels the
decision, which is called backtrack.

Recent SAT solvers obtain many learnt clauses, and it often learns over a
million clauses. Maintaining such an excessive number of clauses degrades per-
formance because of the increased propagation time for checking more clauses.
Clause management systems are implemented in SAT solvers to balance the
bene�ts from learnt clauses to prune the search space and the performance
degradation caused by increased clauses. This system evaluates the quality of
learnt clauses using evaluation metrics such as size and LBD, and it removes
low-quality clauses according to their metric value. Most CDCL SAT solvers
perform this operation after a speci�c search period (e.g., a certain number of
con�icts or restarts). LBD [5] is the most popular clause evaluation metric widely
adopted by most state-of-the-art SAT solvers. The LBD of a clause c can be de-
�ned as LBD(c) = |{d(l) : l ∈ c}| where d(l) represents the decision level of
literal l where decision level indicates the depth of the branching decision tree.
A clause with a lower LBD is considered more valuable because it usually in-
volves a smaller set of decision levels. Besides clause evaluation, the LBD is also
used in other heuristics such as restart strategy [6] and decision branching [9].

2.3 Structure of the SAT Problem

An industrial SAT problem has remarkable structural properties compared to
randomly generated problems. The clause variable ratio (CVR) [10] is an initial
idea that links the structure of the SAT problems and its satis�ability in the
context of random instances. The speci�c boundary of the CVR value where the
probability of SAT or UNSAT changes suddenly is known as the phase tran-
sition. Focusing on the graph of the problem, Ferrara et al. [11] showed that
graphs of industrial SAT problems have much small treewidth compared to ran-
dom ones. Newsham et al. [18] stated that the industrial SAT problem has a
clear community structure and a relationship between performance and struc-
ture was observed. Zulkoski et al. [27] focused on the features of the resolution
principle, such as mergeability between clauses. Further, Williams et al. [25] fo-
cused on backdoor variables, stating that a problem is polynomially tractable if
the Boolean assignment of backdoor variables can be determined.
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2.4 Graph representation of SAT problem

A variable incidence graph (VIG) is often used to represent the SAT problem as
a graph. Let ϕ be a SAT instance with variables V and clauses C. The nodes of
the VIG G(ϕ) are denoted by V , and edges E denote the existence of a clause
in C relating two variables vi, vj ∈ V . The weight function w(evi,vj

) of the edge

between vi and vj is de�ned as
∑

c∈C,vi,vj∈c 1/
(|c|
2

)
. Both literals v and ¬v belong

to node v in VIG. w(e) sums all weights of pairs when the same pair of variables
(vi, vj) appear more than once in the set of clauses C. This implies that a shorter
clause obtains a higher edge weight and vice versa. A clause variable incidence
graph (CVIG) is a bipartite graph where variables and clauses are represented
as nodes on each side, respectively, and there exists an edge between a clause
and a variable if the variable exists in the clause. In this study, we used VIG as
the graph representation of the SAT problem.

3 Correlation analysis on structural properties

We nominated the following ten structural properties (hereafter, features) of the
learnt clause to examine the correlation coe�cients with LBD. These features
are based on the VIG of the original SAT problem (i.e., no learnt clause added).
We denote the learnt clause under the evaluation of features as c and the VIG
representation of the problem instance ψ as G.

1. size of clause is de�ned by |{v : v ∈ c}| where v, c, and notation |A| represent
a variable, learnt clause and the size of the arbitrary set A, respectively.

2. Number of used is de�ned by the number of times c is referred to in con�ict
analysis. Since a higher number of used is expected for better clauses (i.e., lower
LBD), it can be a benchmark feature for interpreting the results of the correlation
coe�cient values in this experiment.

3. Number of adjacent nodes for clause c is de�ned by |
⋃

v∈c adj(v)| where
adj(v) = {u ∈ V : (u, v) ∈ E, u /∈ c}, V,E represent all nodes and edges in G,
respectively.

4. Treewidth of clause The treewidth measures the tree-likeness of the graph.
Given a g(c), a subgraph of G containing all variables Vc ∈ V in clause c and
edges Ec ∈ E from Vc, a tree decomposition of a graph g(c) is d(B, T ) where T
is a tree whose nodes are sets B such that:

1.
⋃

i∈I Bi = Vc
2. For every edge (v, w) ∈ Ec, there exists an Bk such that v ∈ Bk and w ∈ Bk.
3. For all vertices v ∈ Vc, the set {i ∈ I | v ∈ Bi} forms a subtree of T .

The width of a tree decomposition d(B, T ) is de�ned as maxi∈I |Bi| − 1. There-
fore, the treewidth for a clause c is de�ned by mind(B,T ) width(d(B, T )).We used
the minimum degree heuristic for the computation of treewidth value using the
networkx python package. 3

3 Networkx https://networkx.org/documentation/stable/reference/index.html
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5. Number of community is |{community(v) : v ∈ c}| where community(v)
presents the community wherein variable v belongs in graph G. The community
represents a group of nodes denoting variables within a graph that have a high
degree of interconnections among themselves compared to the connections with
nodes outside the group. We used Louvain's community detection algorithm [7].

6. Average internal edge weight is de�ned by avg({w(e)/|c| : e = (vi, vj) ∈
E, vi ∈ c, vj ∈ c}). This notion denotes the degree of strength (the weight of
the edge) of the connection between the nodes within the clauses. e = (vi, vj),
and vi, vj ∈ c indicates that edge e connects to variables vi, vj , belonging to the
clause c. Function w(e) returns the weight of edge e. |c| denotes the size of c,
and function avg(X) returns the means of the set X.

7. Average external edge weight is de�ned by avg({w(e)/|c| : e = (vi, vj) ∈
E, vi ∈ c, vj /∈ c}). This feature is similar to the average internal edge weight;
however, the di�erence is vj /∈ c, which means that it calculates the edges be-
tween a variable vi in the learnt clause c and the adjacent variable vj of vi, which
doesn't belong to learnt clause. When it shows a large value, the variables link
heavily to the external (not in the learnt clause) adjacent variables.

8. Clustering coe�cient for clause is de�ned by avg({clusterCoef(v) : v ∈
c}). The node's clustering coe�cient indicates the degree to which nodes in a
graph tend to cluster together. For a given node v, the clusterCoef(v) is given
by 2M(v)/k(v)(k(v)− 1), where M(v) represents the actual number of edges
between the neighbors of v and k(v) represents the number of neighbors of v.
The clusterCoef(v) represents the strength of local node ties, and its value lies
between 0 and 1, where 1 indicates a complete graph.

9. Connectivity is de�ned by min{|s| : s ∈ c, g(c)− s is disconnected} where s
represents a set of nodes, and g−s represents the graph after removing the nodes
in s, respectively. Connectivity refers to the minimum number of elements that
need to be removed for a graph to become disconnected. A graph is connected
if there is a path between every pair of nodes and disconnected otherwise.

10. Shared adjacents ratio is de�ned by
⋃

v,u∈c(adj(v)∩adj(u))/
⋃

v∈c(adj(v)).
This notion indicates the ratio of shared (common) adjacent nodes in all adjacent
nodes.

3.1 Experiment setup

We investigated the correlation coe�cient of learnt clauses between their ten
features and the values of LBD. We used Glucose 4.2.1 [20], the �rst SAT solver
with LBD implementation, as the base solver for the experiments. We exported
all learnt clauses and their information during the search, such as the literals
contained in the clause and their size, LBD, and the number of used. The export
was performed when a clause was learned, deleted, updated (e.g., promoting the
LBD value), and then, the search �nished. We used 400 benchmark instances
of the main track in the SAT competition 2021. We set 30 min (1800 s) as the
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time limit to �nish the search for the solver. We imposed the following rules
to select instances and clauses: a) instances with more than 1 million variables
or 10 million clauses are excluded because of memory limitations for the graph
construction; b) the clauses with LBD values of 30 or more and sizes of 100
or more were excluded to save the calculation cost, assuming it was reasonable
because clauses with large LBD or sizes are less likely to be used in practical
searches; c) calculations for one instance were terminated at a maximum of 60
h or when the calculation was completed for a maximum of 100,000 sampled
clauses, which were randomly selected from all exported clauses.

3.2 Correlation between the LBD and graph features

Table 1 indicates the distribution of correlation coe�cient values between the
quality measured by LBD and the features de�ned in the previous subsection. We
calculate the coe�cient on each clause using the Pearson correlation coe�cient.
The mean correlation coe�cient value of all clauses is the value for an instance.
The size of clause shows a moderately strong correlation with the value of LBD:
on the mean, it is +0.44, while it is +0.35 at the 25th percentile, and it is +0.54
at the 75th percentile. The value of LBD is inherently bounded by its size, and
therefore, a certain degree of this correlation is to be anticipated. In contrast,
the correlation mean was only -0.09 for number of used, though we expected it
to be strongly correlated with LBD. The number of community correlates only
+0.30 in the mean and +0.20/+0.40 in the 25th/75th percentile, respectively.
This result suggests that the number of community correlates to the value of
LBD a little, but not strongly. The number of adjacents, shared adjacents ratio,
and average external edge weight showed strong correlations; each mean was
+0.48, -0.51, and -0.52, respectively. Interestingly, contrary to LBD, these three
features are independent of the search state. They use only information from the
subgraph of the original SAT problem; however, they show a strong correlation
with the LBD values. Among them, the average external edge weight, which
showed a robust negative correlation with LBD, was analyzed more deeply in
the subsequent section.

3.3 Deep diving to the correlation between AEEW and LBD

Hereafter, we refer to the average external edge weight as AEEW. This notion
value presents the degree of connection strength (as the weight of edge) between
the node in the learnt clause and its adjacent node outside the learnt clause (i.e.,
external). We propose that AEEW and LBD are potentially connected in mea-
suring the �probability of propagation�. LBD re�ects the outcome of propagation
arising from its decision tree structure, whereas AEEW forecasts the probability
of propagation based on the strength of edge connections.

AEEW value at each LBD The previous result in Table 1 shows the dis-
tribution the mean value of all clauses in an instance. Next, we analyzed it in
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Table 1: Values of the correlation coe�cient between the ten features and the
value of LBD. Features are sorted according to their mean values.

Feature Min 25% Mean 75% Max

Number of adjacents 0.07 0.39 0.48 0.58 0.90
Size of clause 0.06 0.35 0.44 0.54 0.91
Treewidth -0.12 0.22 0.32 0.43 0.70

Number of community -0.13 0.20 0.30 0.40 0.65
Clustering coe�cient -0.49 -0.17 -0.06 0.05 0.54

Number of used -0.38 -0.14 -0.09 -0.03 0.39
Connectivity -0.43 -0.21 -0.13 -0.03 0.33

Average internal edge weight -0.53 -0.33 -0.23 -0.05 0.34
Shared adjacents ratio -0.77 -0.57 -0.51 -0.41 -0.06

Average external edge weight -0.78 -0.60 -0.52 -0.41 -0.08

more detail by checking the correlation between the AEEW and LBD of a single
instance. Figure 1 shows the distribution of the AEEW value at each LBD in an
instance. We picked four instances to demonstrate the typical results caused by
the space limitation. These charts indicate the following: (1) The mean of AEEW
decreases with an increase in the LBD value, which helps verify the correlation
in Table 1. (2) The variance of the distribution decreases according to the in-
crease in LBD values. (3) The degree of decrease in the mean and its variance
depends on the instances. These can be explained by the de�nition of AEEW
as follows: A heavier edge weight indicates the existence of the pair of variables
in the small size clause and/or in multiple clauses. The Boolean values of vari-
ables that strongly connected (with a heavier edge weight) are more likely to be
assigned in the same propagation. The variables used in the same propagation
belong to the same decision level, i.e., in the same literal block. Therefore, the
heavier AEEW tends to cause smaller LBD values, suggesting that the AEEW
can be an alternative measurement to the LBD value because of its relationship.

Correlation between AEEW and initial/updated LBD values One char-
acteristic of LBD is that the value is updated during the search. The decision tree
determines the LBD value and changes according to the progress of the search.
Therefore, the LBD value is updated when a smaller set of decision levels for
a clause are found during the search. [21] revealed that this update mechanism
is the source of the e�ciency of LBD, and turning o� this update mechanism
of LBD deteriorates the performance of the solver. We compared AEEW with
the updated LBD values in the previous experiments. This experiment shows
the correlation between the AEEW and initial/updated LBD values. A clause
is identi�ed by its containing literals, and the initial/updated LBD is de�ned
by the maximum/minimum LBD value observed from all exported clauses, re-
spectively. Figure 2a shows the di�erences in the correlation coe�cient between
AEEW and initial/updated LBD values as a scatter chart. Each dot denotes an
instance, and the dot is plotted at the value of its correlation coe�cient value
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Fig. 1: Box-plot of the value of AEEW in the sample 4 instances

of the AEEW of initial/updated values, respectively. A total of 337 instances
remained through the setup rules of the previous experiment. A total of 273 in-
stances (81%) exhibit a stronger correlation in the updated LBD than that in the
initial LBD. We suggest that this result originates from the fact that LBD cal-
culates its values based on the actual propagation results (in a decision tree). In
contrast, AEEW estimates the likelihood of propagation based on the strength
of connections between edges. This characteristic of AEEW, which correlates
to updated LBD more, though it is based on the original instance, suggests its
potential utility in our study.

We visualized the AEEW of each LBD value in an instance in Figure 2b
using spg_300_300.cnf as a typical sample to obtain a more detailed correlation
between the initial and updated LBD values. The value present in the cell at
(lbdinit, lbdupdated) represents the average value of AEEW for a clause where the
initial/updated LBD value was lbdinit, lbdupdated, respectively. When comparing
the values of cells in any column (i.e., when given an initial LBD value), the
higher values are more observed in the cell of the lower updated LBD. This
suggests that AEEW indicates the updated (future) LBD value more than the
initial value, though AEEW utilizes only the initial (original) SAT structure
information.
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(a) Scatter plot of the correlation be-
tween the value of the AEEW and initial
or updated LBD values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.22 0.21 0.17 0.15 0.12 0.10 0.09 0.07 0.06 0.04 0.07 0.01

2 0.20 0.27 0.17 0.16 0.13 0.11 0.10 0.08 0.08 0.07 0.10 0.06 0.06

3 0.14 0.23 0.11 0.11 0.10 0.09 0.08 0.07 0.07 0.05 0.06 0.06 0.02

4 0.11 0.16 0.09 0.08 0.07 0.08 0.07 0.07 0.04 0.05 0.05

5 0.09 0.13 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.03 0.03

6 0.08 0.06 0.05 0.06 0.04 0.04 0.04 0.05

7 0.07 0.05 0.05 0.04 0.05 0.04 0.03 0.07

8 0.06 0.05 0.05 0.04 0.04 0.04 0.06

9 0.05 0.04 0.04 0.04 0.03

10 0.05 0.04 0.04 0.03 0.04
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Fig. 2: AEEW correlation and heatmap with updated/initial LBD values

4 Weight-to-Adjacent-Node-based Clause Evaluation

Through the result of Section 3, we found a strong-correlated feature, AEEW
in the correlation analysis. It indicated that valuable clauses tend to have heavy
edges to adjacent variables on the graph. It means that these clauses are more
easily used in the propagation step and AEEW can capture it. Furthermore,
the second experiment revealed that this feature predicts LBD's minimum value
(updated value) more accurately than its maximum value. Therefore, we assumed
that AEEW is a helpful metric for clause evaluation because of its power to
quantify the propagation probability and its capability to maintain clauses that
will be updated and evaluated as good in the future.

In this section, we propose a new clause evaluation method, weight-to-adjacent-
node-based clause evaluation (WANCE), to manage the learnt clauses. WANCE
utilizes the values of AEEW as the quality metric of the clauses. A higher AEEW
value indicates a higher quality because of the negative correlation. In imple-
menting WANCE, the AEEW values are discretized by rounding to the nearest
ten, ignoring the slight di�erences. We set 0.0001 based on the results of the
preliminary experiments to view the distribution of the AEEW values. We used
WANCE only from the learnt clause management perspective and did not replace
all usages of LBD, e.g., for the decision heuristics and restart strategy, because
replacing LBD can a�ect the performance of other heuristics, which makes it
di�cult to isolate the e�ect of modifying the quality metric and clause manage-
ment method. Further, we used LBD as the secondary metric in the WANCE
method and size as the third one.

Regarding the procedure of the learnt clause evaluation using WANCE, we
followed the scheme of a state-of-the-art SAT solver CaDiCaL [3]: All learnt
clauses are marked to be maintained or targeted for reduction based on their
state. They are sorted according to the values of AEEW, LBD, then, size. A
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speci�c percentage p (in this study, 75% pre-de�ned) of lower-evaluated clauses
are deleted from the database. The instance graph G to calculate the value of
AEEW is built from the original SAT instance at the beginning of the search
before any learning. The sorting function orders the clauses based on AEEW,
LBD, and size values. Given two clauses ci and cj , the higher (better) evalu-
ation is provided to the larger AEEW clause. Therefore, clauses with smaller
AEEW values are deleted preferentially. If AEEW values are equal, the clauses
are deleted based on the LBD value. For equivalent LBD values, the clauses
are deleted based on size. The di�erence from the original implementation of
CaDiCaL is the addition of primary evaluation using AEEW. When a clause
was given, the rate that other maintained clauses had the same AEEW values
was 1.41%. The average percentage of clauses with the same AEEW value was
1.41%; however, among 400 benchmarks, there were three instances where the
probability reached 100%. Excluding them, the mean probability was 0.315%,
with a distribution ranging from 0.018% to 5.505%. This is a notably lower result
compared to the probabilities of having identical LBD and Size values, which
are 2.47% and 1.13%, respectively.

5 Performance Evaluation

5.1 Experiment setup

We evaluated the performance of a solver using the WANCE method against a
base solver, CaDiCaL 1.4.1 [3]. This state-of-the-art sequential SAT solver has
been widely used in the SAT community since 2020 because of its high source-
code readability, structural simplicity, and outstanding performance, making it
the 2019 SAT race winner. We implemented a solver with a random clause
evaluation method to investigate the e�ect of modifying the clause evaluation
method of the base solver, which assigns random values to each clause as its
quality indicator with a random range of 30 (1�30).

Our benchmark comprised 1600 instances from the main tracks of SAT com-
petitions held from 2019�2022 (400 instances/year). We conducted experiments
on a computer with an AMD Threadripper Pro 3995WX processor (64 core)
and 512 GB (128 GB 4 slots, DDR4-3200 MHz) RAM. We used the default
CaDiCaL implementation besides the necessary functions for WANCE and the
random method. We used no options of CaDiCaL for running solvers except the
one for the timeout. For the AEEW calculation, clauses with LBD values of 30
or more, and sizes of 100 or more, were ignored to ensure that the calculation
cost is reduced as that for the observation experimental setup. We evaluated the
performance of the solver based on the number of instances solved within a time
limit of 3600 s on the CPU clock and the PAR-2 per instance score, which rep-
resents the mean time required to solve an instance with an additional penalty
of 3600 s for each unsolved instance.
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5.2 Evaluation result

Table 2 summarizes the results of our experiments, where we compared Base
(CaDiCaL without any modi�cations), Random (CaDiCaL with the random
clause evaluation method), and WANCE (CaDiCaL with the WANCE method).

Table 2: Performance evaluation results corresponding to each solver
sc19 sc20 sc21 sc22 total

Solver SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

Base 129 75 110 94 111 124 128 112 883

Random 124 66 95 87 110 117 124 107 830

WANCE 139 73 105 92 120 124 132 120 905

The performance of the solver using WANCE is better than that of the base
solver using LBD because of solving 22 more instances (+2.5%) and achieving a
PAR-2 per instance score improvement of 38 on average. The improvement was
more signi�cant for SAT instances, whereas the number of UNSAT instances
solved was almost equivalent to that of the base solver. A 4.6% performance
improvement was observed when limited to only SAT. As expected, the random
selection solver performed considerably worse, thereby solving 53 instances less
(-6.0%). Compared with the results of the random one, the obtained results
con�rmed that WANCE could be improved via its methodology instead of by
modifying only the clause evaluation function.

This result is notable because WANCE relies only on the subgraph informa-
tion of the original SAT problem, which makes it su�cient to assess the quality
of the learnt clauses as accurately as the LBD. This improvement can be at-
tributed to the AEEW value being more correlated to the updated LBD value
than the initial one. In the LBD-based solver, the clauses are evaluated and
removed based on their LBD values at a certain moment. A lower-rated clause
can be removed even if the clause has a possibility to be higher-rated in the
future. We observed that clauses learned several times (removed several times
in other words) were updated to LBD 2. WANCE can retain these potentially
useful clauses, thereby improving the performance of the solver. This study also
hints at possible insights for designing and �ne-tuning SAT solvers, suggesting
that clauses strengthening the current structure make the solver work better.

6 Related Work

Learnt Clause Evaluation Audemard et al. [4] proposed the �freezing and
reactivation� strategy for clause management. The solver saves all clauses in
its database and selectively activates some clauses learned in the search state,
which are similar to the currently learned one. Further, it freezes other clauses
instead of deleting them from the database. Sonobe [21] studied the di�erences
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between the same LBD clauses and distinguished the clauses of the same LBD
value based on the number of variables in each literal block. Further, the research
revealed that disabling the update function of LBD worsened the performance of
solving UNSAT instances with a limited impact on the SAT. Jabbour et al. [15]
focused on the size metric against LBD and showed that employing a random
strategy for clauses above a certain size improves performance. Vallade et al.
[24] revealed the correlation between the LBD value and the number of com-
munities in the graph, and they proposed a new clause evaluation method that
combines the number of communities and LBD scores. Soos et al. [22] developed
a framework to understand heuristics in SAT solvers, particularly about manag-
ing learnt clauses. They assessed various clause features, such as those utilized
for UIP creation, to measure their signi�cance as �relative importance.� Yang et
al. [26] introduced CausalSAT, a tool designed to uncover the causal connections
between learned clauses and the values of speci�c heuristics, particularly LBD.
Jamali et al. [16] utilized Between Centrality to evaluate learnt clauses and they
showed that this measure contributes to Solver's performance improvement.

Relationship between the SAT Problem and Graph Structure Anstegui
et al. [2] analyzed the graph of SAT problems and showed that industrial SAT
problems have stronger community structures than random ones when using
modularity Q to quantify the results. Newsham et al. [18] studied the correlation
between the community structure and LBD values and demonstrated that the
degree of the community structure is related to its runtime (i.e., the di�culty
of the instance). Newsham et al. [19] visualized the graph structure of the SAT
problem and showed that the progress of the search (i.e., acquired learnt clause)
destroyed the clarity of the structure. Mull et al. [17] studied the theoretical
analysis of the hardness from the structure of the SAT problem perspective.
Several theoretical attempts were made to explain the e�ectiveness of the modern
SAT solver, and Ganesh and Vardi [12] summarized these attempts.

7 Conclusion

We proposed a new learnt clause evaluation method, WANCE, for SAT solvers.
Through the correlation analysis between the quality of clauses measured by
LBD and the graph-structural properties of the learnt clauses, we found a prop-
erty, AEEW that represents the average weight of the edge between nodes in a
clause and their adjacent nodes outside the clause, that indicated a strong cor-
relation coe�cient of -0.52 with LBD. WANCE was implemented using AEEW
as its primary metric for clause evaluation. Experimental results indicated that
a solver that implemented WANCE achieved 2.5% better performance in the
number of instances solved than the state-of-the-art solver that primarily uses
LBD.

As the future work, �rst, there is potential to explore other structural prop-
erties as evaluation metrics other than AEEW. Adopting machine learning tech-
niques such as graph neural networks can help discover better-quality metrics. In
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addition, structural evaluation metrics such as WANCE are expected to be more
e�ective in parallel environments owing to their search-independent character-
istics. WANCE can be utilized as a criterion for clause-sharing decisions among
parallel workers. Finally, we hope that utilizing graph features for clause evalu-
ation will spur further research into the theoretical study of the e�ectiveness of
LBD and other clause evaluation methods.
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Abstract. Nowadays, artificial intelligence systems seem to be urgent
and breaking-through tools for efficient traffic management in modern
urban road networks. However, these tools are highly sensitive to ac-
curate travel demand data when predicting traffic congestion. Despite
the fact that researchers have already developed numerous approaches
to dealing with travel demand estimation, in many cases there is still
a lack of ability to achieve the required accuracy level. The present pa-
per focuses on the travel demand search task, formulated as an inverse
traffic assignment problem. We developed multi-output regression mod-
els to estimate travel demand values for a road network with multiple
origin-destination pairs. We used solutions to the non-linear optimiza-
tion problem of equilibrium traffic assignment under different demand
patterns to generate data for training and test sets. Our computational
study gave several practical recommendations on the best scenarios for
the implementation of such a tool as a multi-output regression for travel
demand estimation.

Keywords: travel demand estimation, user-equilibrium, multi-output
regression

1 Introduction

Nowadays, artificial intelligence systems seem to be urgent and breaking-through
tools for efficient traffic management in modern urban road networks. However,
these tools are highly sensitive to accurate travel demand data when predicting
traffic congestion. Researchers deal with travel demand estimation (or origin-
destination (OD) matrix estimation) by virtue of different approaches and tech-
niques. From a mathematical perspective, the simplest approach may refer to
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equilibrium traffic flows and optimization of a transportation network on the case of
Petrozavodsk city).
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the gravity methods, which have been well described in the context of spa-
tial regional analysis [9]. Another large class of approaches can be associated
with a priori economic theorizing (see, for instance, [6]). Such basic concepts
have been developed and implemented in various ways by scientists from vari-
ous fields. Moreover, the development of technical facilities and devices, such as
traffic counters or plate scanning sensors, has not completely solved the above-
mentioned problem but has initiated investigations of emerging issues. Thus,
researchers have developed a technique that could possibly help overcome the
incompleteness of data gathered by plate scanners [16]. In fact, even back then,
incomplete data was a routine input condition when solving the travel demand
estimation problem.

The first bi-level formulations of the OD-matrix estimation problem employ-
ing the user equilibrium assignment principle were made in the 1980s [7, 17]. In
the beginning of the 1990s, this approach was reinforced by a clear demonstra-
tion of various alternative bi-level problems with user equilibrium assignment
(in the lower-level), which reflected the travel demand estimation process [24].
Since those bi-level programs that had appeared were actually NP-hard, a single-
level optimization model was based on the stochastic user equilibrium concept to
estimate path flows and, hence, travel demand [2]. In turn, a method for estimat-
ing the set of routes and their flows under the static user-equilibrium assignment
principle was presented [1]. Researchers offered to cope with the complications of
the bi-level problem by means of heuristic methodology [15]. Moreover, a convex
approximation of the bi-level program by single-level optimization was offered
[21]. The stochastic user equilibrium principle was also employed by researchers
in order to avoid a bi-level formulation of the travel demand estimation problem
[23].

Researchers still contribute in the field, improving previously proposed so-
lutions and developing new approaches. Sun and Fan study demand estimation
using stochastic programming [22], while others develop perimeter control strate-
gies based on the macroscopic fundamental diagram [14]. There are new results
on demand estimation for strategic road traffic assignment models with strict
capacity constraints and residual queues [5]. However, all these studies are based
on the assumption that estimated OD flow should align with a prior belief or
knowledge of OD demand. We believe that the existence of an a priori OD-
matrix is a too strict assumption, since in practice, as a rule, no one has any
pre-given or a priori information on travel demand. The only data traffic engi-
neers can gather in most large cities using primitive observation equipment is
road flows. In our research, we deal with the travel demand estimation problem,
avoiding a priori given demands. Our aim is to develop tools that are able to
provide valuable demand information for practical reasons.

In the present paper, we concentrate on the development of approaches for
solving the bi-level formulation of the travel demand estimation problem em-
ploying the user equilibrium assignment principle. A deep understanding of the
relationship between traffic assignment and travel demand estimation allows one
to develop artificial intelligence tools of high performance and efficiency for traf-
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fic management support. The traffic assignment problem is formulated in the
form of a nonlinear optimization program in Section 2. A bilevel travel demand
estimation problem is given in Section 3. Up-to-date issues and challenges are
discussed. Section 4 is devoted to regression models in the context of the travel
demand estimation problem. In particular, we study the sensitivity of key met-
rics of regression models to the number of OD pairs under consideration. The
last section is devoted to conclusions and further plans.

2 Traffic assignment problem

Let us consider an urban road network presented by a directed graphG = (E, V ),
where V represents a set of intersections, while E represents a set of available
roads between the adjacent intersections. Define W ⊆ V × V as the ordered
set of pairs of nodes with non-zero travel demand Fw > 0, w ∈ W . W is
usually called as the set of origin-destination pairs (OD-pairs), |W | = m. Any
set of sequentially linked arcs initiating in the origin node of OD-pair w and
terminating in the destination node of the OD-pair w we call route between the
OD-pair w, w ∈ W . The ordered set of all possible routes between nodes of the
OD-pair w we denote as Rw, w ∈ W , and the ordered set of all possible routes
between all OD-pairs we denote as R, R = ∪w∈WRw. Demand Fw > 0 seeks
to be assigned between the available routes Rw:

∑
r∈Rw fw

r = Fw, where fw
r is

a variable corresponding to a traffic flow through route r ∈ Rw between nodes
of OD-pair w ∈ W . Introduce the vector of demand F = (F 1, . . . , Fm)T and
the vector f associated with the route-flow traffic assignment pattern, such that
f = fR = (. . . , fw

r , . . .)T is actually a vector of {fw
r }w∈W

r∈Rw .
Let us introduce differentiable strictly increasing functions on the set of real

non-negative numbers te(·), e ∈ E. We suppose that te(·), e ∈ E, are non-
negative and their first derivatives are strictly positive on the set of real non-
negative numbers. By xe we denote traffic flow on the arc e, while x is an
appropriate vector of arc-flows, x = (. . . , xe, . . .)

T, e ∈ E. Defined functions
te(xe) are used to describe travel time on arcs e, e ∈ E, and they are commonly
called arc delay, cost or performance functions. In this section we assume that
the travel time function of the route r ∈ Rw between OD-pair w ∈ W is the sum
of travel delays on all arcs belonging to this route. Thus, we define travel time
through the route r ∈ Rw between OD-pair w ∈ W as the following separable
function

twr (f) =
∑
e∈E

te(xe)δ
w
e,r ∀r ∈ Rw, w ∈ W, (1)

where, by definition,

δwe,r =

{
1, if arc e belongs to the route r ∈ Rw,
0, otherwise.

∀e ∈ E,w ∈ W,

while, naturally,

xe =
∑
w∈W

∑
r∈Rw

fw
r δwe,r ∀e ∈ E, (2)
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i.e. traffic flow on the arc is the sum of traffic flows through all routes that
include this arc.

The equilibrium traffic assignment problem under separable travel time func-
tions has the following form of optimization program [18, 20]:

χ(F ) = min
x

∑
e∈E

∫ xe

0

te(u)du, (3)

subject to ∑
r∈Rw

fw
r = Fw, ∀w ∈ W, (4)

fw
r ≥ 0 ∀r ∈ Rw, w ∈ W, (5)

where, by definition,

xe =
∑
w∈W

∑
r∈Rw

fw
r δwe,r ∀e ∈ E. (6)

An arc-flow assignment pattern x and corresponding route-flow assignment pat-
tern f , satisfying (3)–(6), are proved to reflect user equilibrium traffic assignment
or such an assignment that

twr (f) =
∑
e∈E

te(xe)δ
w
e,r

{
= tw, if fw

r > 0,
≥ tw, if fw

r = 0,
∀r ∈ Rw, w ∈ W, (7)

where tw is equilibrium travel time or travel time on actually used routes between
OD-pair w, w ∈ W . Herewith, in case x is searched as a result of solving (3)–(6),
then one deals with arc-flow equilibrium traffic assignment problem [11]. Other-
wise, if f is searched, then route-flow equilibrium traffic assignment problem is
under consideration [12].

3 Travel demand estimation problem

Travel demand estimation and traffic assignment search are two problems that
can be considered mutually inverse. Indeed, the solution variables of the travel
demand estimation problem are input data for traffic assignment search, while
the solution variables of the traffic assignment problem are input data for travel
demand estimation (table 1). The first consideration of the travel demand es-
timation problem as the inverse traffic assignment problem was made by [4].
However, he formulated the inverse problem in very general terms, where even
a matrix of route choice was believed to be given. One of the main purposes
of the present paper is to eliminate the excessive use of pre-given and a priori
information when estimating travel demand. Indeed, when using an a priori ma-
trix in the objective function of the demand evaluation task, the travel demand
estimation problem is reduced to a standard deviation search.
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Table 1. Input data and solution variables.

Locations of OD-pairs Travel demand values Traffic congestions

Traffic
assignment Input data Input data Solution variables
problem

Travel
demand Solution variables Solution variables Input data

estimation

In fact, the problem of travel demand estimation is reduced to the problem of
iterative updating of the travel demand information for a given set of origin-
destination pairs.

We believe the assumption of the existence of an a priori OD-matrix is
too strict when considering the travel demand estimation, and we formulate this
problem in such a way that we could avoid the pre-given or a priori information.
Actually, we formulate the inverse traffic assignment problem, where the equi-
librium assignment pattern x̄ is given, while locations of OD-pairs and travel
demand values are to be found [10]. Therefore, the travel demand estimation
problem has the following form of bi-level optimization program:

min
F

||χ(F )− x̄|| (8)

subject to
Fw ≥ 0 ∀w ∈ V × V, (9)

where mapping χ(F ) is given by the optimization program (3)–(5) with a def-
initional constraint (6). However, one can see that the problem (8)–(9) has a
trivial solution such that Fw = x̄w for all w ∈ W under W = E. Moreover, let
us consider a transportation network presented by a directed graph with 4 nodes
and 4 arcs (Fig. 1).

Fig. 1. Transportation network of 4 nodes

We suppose that there is a traffic flow on each arc, which is equal to 10. A
solution to the corresponding inverse traffic assignment problem (8)–(9) does
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exist. However, there are several solutions to the travel demand estimation prob-
lem (8)–(9) in this case: for example, F (1,3) = 10 and F (3,1) = 10 or F (2,4) = 10
and F (4,2) = 10 (Fig. 1). Thus, one can see that the travel demand estima-
tion problem (8)–(9) may have multiple solutions. Actually, it has already been
revealed previously that [10]:

– generally, the inverse equilibrium traffic assignment problem has no unique
solutions;

– if the location of the OD-pairs is known, then the inverse equilibrium traffic
assignment problem may have a unique solution.

Hence, once the travel demand locations are specified, the obstacles concerning
the OD-pairs search disappear. Otherwise, the upper-level goal function demon-
strates fuzzy behavior, and continuous optimization cannot cope with the prob-
lem. In other words, a priori information on the locations of OD pairs appears
to be quite important for travel demand estimation, and it is still not as strict
a requirement as a priori information on the OD matrix. Therefore, we should
improve the formulation (8)–(9) as follows:

min
F

||χ(F )− x̄|| (10)

subject to
Fw > 0 ∀w ∈ W, (11)

Fw = 0 ∀w ∈ V × V \W, (12)

where W is given.

4 Estimation of travel demand values for multiple
origin-destination pairs

Previously, we have shown that polynomial regression fits well to estimate the
overall travel demand in an urban road network [19]. Indeed, if we consider the
travel demand search task as an inverse traffic assignment problem, then the
overall travel demand, i.e., ∑

w∈V×V

Fw,

appears to be estimated via linear and polynomial regression at a high level of
accuracy (figures 2, 3, and 4). Due to mapping χ(F ), we were able to generate any
size datasets to learn and test regression models, which allowed us to reconstruct
overall travel demand by observing traffic. Firstly, we generated 400 000 pairs of
the traffic assignment pattern and the overall demand value for the Sioux-Falls
road network [8]. Then, we developed the linear regression model and visualized
the obtained results as given in Fig. 2. Axis X reflects the real values of the
overall demand, while axis Y reflects values predicted by the model. The closer
the shape of the graph to y = x, the higher the quality of the model.
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R2: 0.9978288568823274 R2: 0.9977746187284728

Fig. 2. Linear regression

R2: 0.9982787603645912 R2: 0.9981649141146739

Fig. 3. Polynomial regression 2 degree

R2: 0.9980645257730227 R2: 0.9965214104118396

Fig. 4. Polynomial regression 3 degree

Due to the graphs and the fact that the R2 value is close to 1, we can conclude
that the model works quite well, i.e., the regression predictions perfectly fit the
data. The left picture demonstrates results for the model learned from 70% of
the data and tested from 30% of the data, while the right picture demonstrates
results for the model learned from only 20% of the data. Thus, the model does
not require extra-large datasets to give a valuable response. The model appeared
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to work even better for the second-degree polynomial regression model (fig. 3).
Then, we developed the third-degree polynomial regression model (fig. 4). Ac-
cording to R2 values, we concluded that the second-degree polynomial regression
model demonstrates the best results. Eventually, we summarized our findings as
follows:

– the second-degree polynomial regression model fits the best for the overall
demand estimation by observing traffic;

– the polynomial regression model does not require large-scale learning datasets
to work well.

Our current research further explores regression models in the context of
travel demand estimation. However, instead of the overall demand value search,
we now focus on the estimation of multiple demand values for several origin-
destination pairs simultaneously. This time we again deal with the Sioux-Falls
road network and generate 10 000 vectors of the traffic assignment patterns
for 10 000 vectors of feasible demands. Our approach implies that we generate
separate datasets for different patterns of origin-destination locations and the
number of OD pairs. Table 2 demonstrates the values of the most important
metrics for our multi-output regression model.

Table 2. Metrics for linear multi-output regression model.

Number of Input layer MSE R2 MAE MAPE
OD pairs dimension

5 76 8.32e−24 1 2.24e−12 2.69e−15

24 76 1.07e−24 1 7.87e−13 5.64e−15

50 76 0.17 0.99 0.16 0.0013

100 76 17368.99 0.67 101.48 2.28

Since the Sioux-Falls road network has 76 arcs, then the input layer of the
model consists of 76 components. Indeed, for any feasible travel demand pattern,
mapping χ(F ) returns a value of flow for every road arc.

Table 3. Metrics for some other models.

Number of Input layer MSE R2 MAE MAPE
OD pairs dimension

Gradient boosting

100 76 26936.54 0.51 133.23 37.99

Neural network

100 76 18387.02 0.66 104.43 2.21
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One can see that while the number of OD pairs is less than the number of arcs in
a road network, the developed linear multi-output regression model works very
well. However, once the number of OD pairs exceeds the number of arcs, the
quality of prediction drastically degrades. Table 3 shows that other models face
the same problem.

The equilibrium travel time value (7) seems to be an important characteristic
of traffic congestion. We extract data on these values from the generated 10
000 vectors of traffic assignment patterns and put them in accordance with
the 10 000 vectors of feasible demands. We taught different models to predict
travel demands using equilibrium travel time values as the input layer. The most
important metrics for different models are given in Table 4.

Table 4. Metrics for some models.

Number of Input layer MSE R2 MAE MAPE
OD pairs dimension

Linear multi-output regression model

5 5 269234.95 0.95 389.25 0.65

Gradient boosting

5 5 30628.13 0.99 97.53 0.18

Neural network

5 5 341104.4 0.93 365.55 0.58

Gradient boosting (GB) appears to fit quite well for this task. We proceed with
testing GB in cases with a larger number of OD pairs.

Table 5. Metrics for gradient boosting.

Number of Input layer MSE R2 MAE MAPE
OD pairs dimension

24 24 42850.28 0.81 152.47 1.34

We should mention that 552 is the maximum number of OD pairs for the Sioux-
Falls road network. However, even for 24 OD pairs, the model demonstrates
a deterioration of metrics values (table 5). As a next research step, we extract
data on the numbers of actually used routes from the generated 10 000 vectors of
traffic assignment patterns and put them in accordance with the 10 000 vectors
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of feasible demands. We taught a linear multi-output regression model to predict
travel demands using equilibrium travel time values and the number of actually
used routes as the input layer. The most important metrics for our linear multi-
output regression model are given in Table 6.

Table 6. Metrics for linear multi-output regression model.

Number of Input layer MSE R2 MAE MAPE
OD pairs dimension

5 10 335731.19 0.94 429.9 1.58

One can see that the results are even worse than those without data on the
number of actually used routes. Perhaps additional data appears to be correlated
traits that prevent the model from better learning (fig. 5).

Fig. 5. Correlation matrix.

Therefore, our computational study leads to the conclusion that the best scenario
for the implementation of such a tool as a multi-output regression for travel
demand estimation is a smaller number of OD pairs compared to the number of
arcs in a road network. Indeed, it is this scenario that appears to demonstrate
the best model performance in terms of metrics. Moreover, when we tried to
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increase the dimension of the input layer using additional information besides
traffic congestion, we faced the problem of correlated traits. In other words,
traffic congestion values seem to be the most informative data to estimate travel
demands in the case of multiple OD pairs, but the number of these pairs should
be less than the number of arcs in a road network.

5 Conclusion

The present paper was focused on the travel demand search task, formulated
as an inverse traffic assignment problem. We developed multi-output regression
models to estimate travel demand values for a road network with multiple origin-
destination pairs. We used solutions to the non-linear optimization problem of
equilibrium traffic assignment under different demand patterns to generate data
for training and test sets. Our computational study led us to the conclusion
that traffic congestion values were the most informative data to estimate travel
demands in the case of multiple OD pairs, but the number of these pairs should
be less than the number of arcs in a road network. Such implementation condi-
tions provided the best performance of the multi-output regression model when
estimating travel demand values.
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Abstract. Empty container repositioning (ECR) is crucial in handling
global trade imbalances by managing the flow and storage of empty con-
tainers to effectively accommodate customer demands and returns. We
formulate a Markov decision process that accounts for practical char-
acteristics of ECR, including multiple transportation modes and lead
times, and uncertainty and serial correlation in net container inflows. To
determine a cost-minimising repositioning policy for real-life scenarios,
we employ a stochastic approximate dynamic programming approach, in-
tegrated with statistical techniques, such as convex regression and Latin
hyper cube sampling. We highlight the advantages of incorporating ex-
ogenous variables into the approximation model. A case study with his-
torical daily data on empty container in- and out-flows demonstrates
the effective control of on-hand inventory levels while optimising holding
and leasing costs. Moreover, we quantify the benefits of leveraging all
transportation modes, with cost reduction potentials of up to 26.05%.
Finally, we evaluate the robustness of our algorithm under variations in
key parameters.

Keywords: Empty container repositioning · Approximate dynamic pro-
gramming · Inventory control

1 Introduction

Empty Container Repositioning (ECR) is critical to optimising container trans-
port networks, ensuring efficient flow and storage of empty containers to effec-
tively meet customer demands and manage global trade imbalances [8]. ECR
encounters practical challenges, including the dynamic nature of freight trans-
portation operations, uncertainties in container inflows and outflows, and diverse
transportation modes for repositioning empty containers, each with unique costs,
lead times and capacities [7]. To tackle these challenges, this paper adopts the
stochastic approximate dynamic programming (ADP) approach [5], which in-
herently captures the sequential decision-making process and uncertainties over
time while integrating statistical approximation techniques for scalability.

⋆ Sangmin Lee acknowledges funding from Innovation Fund Denmark (grant number
[1044-00022B]).
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In the literature tackling the ECR problem at the regional level, [2] considers
multiple ports and stochastic demand but does not account for multiple modes of
transport and serial correlation in demand. On the other hand, [3] incorporates
multiple inland container stations and multiple modes of transport, yet assuming
zero lead time and deterministic demand. Our work extends a single-depot ECR
problem presented in [8] to more generic case, incorporating multiple modes of
transport with lead times and addressing stochastic and serially correlated net
container inflows.

The main contributions of this paper are as follows: we formulate a Markov
decision process (MDP) for managing inland empty container inventory, which
considers multiple transportation modes and lead times, and addresses uncer-
tainties and serial correlation in empty net container inflows; we also develop an
ADP algorithm that exploits the structure of the MDP and can scale to real-life
instances. Through a case study with historical daily data on empty container
inflow and outflow, we examine the efficiency of our optimal policy estimate, and
investigate the benefits of leveraging multiple transportation modes for container
repositioning and incorporating net inflow information into our approximation
model. We further assess convergence and sensitivity to critical parameters, such
as the variance of white noise affecting net inflows and the unit cost of leasing
containers.

2 Problem formulation

To formulate the MDP, consider a discrete, finite-horizon inventory system with
a single-depot, managing a specific type of containers and accounting for lost
sales3. A point in time is indexed by t ∈ {0, 1, . . . , T}, where T represents the
end of the time horizon, and time periods are denoted by [t, t+1[, including time
point t but not t+ 1.

Decisions on repositioning empty containers are made at the discrete points
in time t = 0, 1, . . . , T − 1. A repositioning-in order relocates empty containers
from external locations, such as ports or other depots, into the internal depot,
while a repositioning-out order does the opposite. Repositioning-in orders involve
different transportation modes from the set M. These modes are characterised
by distinct lead times, unit ordering costs and capacities, and indexed by m =
1, 2, . . . ,M , where the modes are sorted according to increasing lead times. We
assume that

l(m
′) > l(m) and c(m

′) < c(m) ∀m,m′ ∈ M : m′ > m,

3 Throughout the paper, we denote x+ = max(x, 0) and x− = max(−x, 0) for any
real number x ∈ IR. We use lower-case bold letters (x,y, etc.) for column vectors
and calligraphic letters (X , Y, etc.) for sets. However, the sets of real and integer
numbers are denoted by R and Z, and the sets of non-negative numbers by R+ and
Z+. When referring to (exogenous) random variables, uppercase letters denote the
variables themselves, while lowercase letters represent their realisations.
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where l(m) ∈ {0, 1, . . . , T}, c(m) ∈ R+ and k(m) ∈ Z+ denote the lead time,
unit ordering cost and capacity of transportation mode m, respectively. These
assumptions indicate that transportation modes with shorter lead times provide
greater flexibility in handling uncertainties in demand but have higher order-
ing costs than those with longer lead times. For simplicity, we assume that
repositioning-out orders are facilitated by a specific transportation mode not in
the setM. Once repositioning-out orders are placed, the containers are promptly
dispatched. The unit ordering cost and transportation capacity for reposition-
ing the containers out of the depot are denoted by cout ∈ R+ and kout ∈ Z+,
respectively. To render the problem nontrivial, we adopt the same assumptions
as [8], i.e., that repositioning-in costs are lower than penalty cost for lost-sales
and repositioning-out costs are lower than holding costs:

c(m) < cl ∀m ∈ M and cout < ch,

where ch and cl denote the unit holding and penalty cost, respectively.
In addition to endogenous repositioning decisions, the depot manages ex-

ogenous random inflow and outflow of empty containers. Exogenous inflow in-
volves empty containers returns by customers, while exogenous outflow repre-
sents empty container customer demands. We make the following assumptions
concerning the exogenous random information. Let {Wt : t = 0, 1, . . . } denote
a discrete-time stochastic process on the state space W and with the Markov
property, i.e., P (Wt+1 ∈ A|W0, . . . ,Wt) = P (Wt+1 ∈ A|Wt) for A ⊆ W and
t = 0, . . . , T − 1. The net inflow of empty containers into the depot during pe-
riod [t, t + 1[ is represented by a discrete random variable Zt+1 = h(Wt+1, t),
where h is a deterministic function of Wt+1 and t. For Zt+1 = zt+1, a positive
value zt+1 > 0 indicates a net inflow, while a negative value zt+1 < 0 presents a
net outflow. We assume that the random variable Wt+1 is realised at the end of
the time period, just before time t + 1, and so is Zt+1. If the inventory level is
insufficient to meet all customer demands, excess demand is satisfied by leasing
additional containers from lessors. Thus, the unit penalty cost for lost-sales (cl)
reflects the unit leasing cost and is referred to this throughout the remainder of
the paper.

For each t ∈ {0, . . . , T − 1}, the inventory system undergoes periodic re-
view through the following sequence of events within time period [t, t + 1[: (1)
repositioning-in orders, placed in previous time points and due at time t, ar-
rive; (2) the current state of the inventory system is observed; (3) repositioning
decisions are made, given the state of the inventory system and the exogenous
information available at time t, and repositioning-in and -out orders are placed;
(4) repositioned empty containers are dispatched for the repositioning-out or-
der; (5) the net inflow of empty containers during period [t, t + 1[ is realised;
(6) ordering, holding and leasing costs accrue; We note that the first five events
occur in the beginning of the period (right after time t), while the last two events
take place in the end of the period (just before time t + 1). A summary of the
sequence of events and the corresponding notation is provided in Table 1.

For each t ∈ {0, . . . , T}, the so-called pre-decision state of the internal in-
ventory system is represented by an l(M)-vector st = (s0,t, s1,t, . . . , sl(M)−1,t)

⊤,
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Table 1. The sequence of events in the periodic review of the inventory system within
time period [t, t+ 1[.

Events notation

(1) repositioning-in orders arrive x
(1)

t−l(1)
, . . . , x

(M)

t−l(M)

(2) inventory state is observed s0,t = [sx0,t−1 + zt]
+ +

∑
m x

(m)

t−l(m)

(3) re-positioning orders are placed xout
t , x

(1)
t , . . . , x

(M)
t

(4) re-positioning out orders are dispatched sx0,t = s0,t − xout
t

(5) net inflow is realised zt+1 = h(wt+1, t)

(6) one-period cost accrues C(s0,t, wt+1,xt)

where s0,t denotes the inventory level of empty containers at time t follow-
ing the arrival of repositioning-in orders that are due at time t but before the
placement of new orders, and si,t, for i = 1, 2, . . . , l(M) − 1, denotes cumulative
repositioning-in orders scheduled to arrive at time t+ i. The set of pre-decision
states is denoted by S = S0 × S1 × · · · × Sl(M)−1, where:

S0 = Z+, Si = {0, 1, . . . ,
M∑

m=1

k(m)} ∀i ∈ {1, . . . , l(1) − 1},

Si = {0, 1, . . . ,
M∑

m̃=m

k(m̃)} ∀i ∈ {l(m−1), . . . , l(m) − 1}, m ∈ {2, . . . ,M}.

The repositioning decisions made at time t ∈ {0, . . . , T − 1} are denoted by

an (M + 1)-vector xt = (xout
t , x

(1)
t , x

(2)
t , . . . , x

(M)
t )⊤, where xout

t denotes the size
(number of containers) of the repositioning-out order placed at time t, while

x
(m)
t represents the size of the repositioning-in order placed at time t for trans-

portation mode m. The decision variables must satisfy the following constraints:

xout
t ≤ s0,t, xout

t ≤ kout, x
(m)
t ≤ k(m), ∀m ∈ M, (1)

xout
t , x

(m)
t ∈ Z+, ∀m ∈ M. (2)

Constraints (1) ensure that the repositioning-out order is limited by the current
inventory level and its transportation capacity, while feasible repositioning-in
orders do not exceed the capacity of the corresponding transportation modes.
Constraints (2) define domains for decision variables, enforcing them to be non-
negative integers. Given s0,t, the set of solutions satisfying the constraints (1)
- (2) is denoted by X (s0,t). The set of all feasible solutions is denoted by X =
∪s∈S0X (s).

In addition to the pre-decision state, we define the post-decision state of the
internal inventory system for each t ∈ {0, . . . , T − 1}. The post-decision states
are denoted by an (l(M) +1)-vector sxt = (sx0,t, s

x
1,t, . . . , s

x
l(M),t

)⊤ and determined



ADP for inland empty container inventory management 233

by sxt = g(st,xt), where:

gi(st,xt) =


si,t − xout

t if i = 0,

si,t + x
(m)
t if i = l(m), m = 1, . . . ,M − 1,

x
(M)
t if i = l(M),

si,t otherwise.

The first component, sx0,t, represents the inventory level of empty containers
immediately after the dispatch of empty containers for the repositioning-out
order but prior to the realisation of the net inflow zt+1. The remaining com-
ponents indicate outstanding repositioning-in orders, including those placed at
time t. That is, for each m = 1, . . . ,M − 1, sl(m),t includes the repositioning-in

order for transportation mode m placed at time t, i.e., x
(m)
t , arriving at time

t + l(m). Given s0,t, the set of post-decision states is represented by Sx(s0,t) =
Sx
0 (s0,t)× Sx

1 × · · · × Sx
l(M) , where:

Sx
0 (s0,t) = {0, 1, . . . , s0,t}, Sx

i = {0, 1, . . . ,
M∑

m=1

k(m)} ∀i ∈ {1, . . . , l(1)},

Sx
i = {0, 1, . . . ,

M∑
m̃=m

k(m̃)} ∀i ∈ {l(m−1) − 1, . . . , l(m)}, m ∈ {2, . . . ,M}.

We denote the set of all possible post-decision states by Sx = ∪s∈S0
Sx(s).

Given sxt and wt+1, the pre-decision state of the internal inventory system at
time t+ 1 is determined by st+1 = f(sxt , wt+1, t), where:

fi(s
x
t , wt+1, t) =

{
[sxi,t + zt+1]

+ + sxi+1,t if i = 0,

sxi+1,t otherwise,
with zt+1 = h(wt+1, t).

The term [sxi,t+ zt+1]
++ sxi+1,t represents the inventory level on hand, including

the net inflow of empty containers into the depot during period [t, t + 1[ and
repositioning-in orders arriving at time t+1. Note that the pre-decision dynamics
of the internal inventory system can be expressed by the composite function
st+1 = f(g(st,xt),Wt+1, t).

At the end of each period [t, t+1[, the one-period cost is given by the function:

C(s0,t, wt+1,xt) = c⊤xt + ch[s0,t − xout
t + zt+1]

+ + cl[s0,t − xout
t + zt+1]

−

with zt+1 = h(wt+1, t),

where c = (cout, c(1), c(2), . . . , c(M))⊤. The first term presents ordering costs and
the second and third term represent holding and leasing costs, respectively.

The empty container inventory control problem consists of making reposi-
tioning decisions such as to minimize expected total costs during [0, T [:

min
π

Eπ

[
T−1∑
t=0

C(s0,t,Wt+1,xt)
∣∣∣ s0, w0

]
(3)

s.t. xt = πt(st,Wt), st+1 = f(g(st,xt),Wt+1, t), xt ∈ X (s0,t),
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where π = (π0, π1, . . . , πT−1) is a policy, i.e., πt is a function that maps a pair of a
pre-decision state and exogenous variable (st, wt) to a repositioning decision xt.
The subscript π of the expectation Eπ[·] indicates that decisions are determined
by the policy π. It should be remarked that decisions xt depend on the realisation
wt of Wt, but must be independent of the realizations of Wt, . . . ,WT .

By the application of dynamic programming [6], the problem (3) can be
solved sequentially, decomposing it into subproblems for each time period. For
t ∈ {0, . . . , T−1}, let Vt(st, wt) denote the pre-decision value function, capturing
the minimal expected total costs during period [t, T [, given st, wt. By [6], these
value functions satisfy the Bellman optimality equations [1]:

Vt(st, wt) = min
xt∈X (s0,t)

E
[
C(s0,t,Wt+1,xt) + Vt+1(f(g(st,xt),Wt+1, t),Wt+1)|wt

]
∀st ∈ S, wt ∈ W, t ∈ {0, 1, . . . , T − 1}, (4)

where VT (sT , wT ) ≡ 0 for all sT ∈ S and wT ∈ W. That is, the pre-decision
value can be determined by the minimal expected current one-period cost during
period [t, t + 1[ and the future costs during [t + 1, T [, given st, wt. Solving (4)
for each t ∈ {0, 1, . . . , T − 1}, the optimal decisions, denoted by π∗

t (st, wt), are:

π∗
t (st, wt) = argmin

xt∈X (s0,t)

E
[
C(s0,t,Wt+1,xt) + Vt+1(f(g(st,xt),Wt+1, t),Wt+1)|wt

]
(5)

The Bellman equation can equivalently be expressed using post-decision
states. For each t ∈ {0, 1, . . . , T − 1}, we define the post-decision value func-
tion V x

t (s
x
t , wt), capturing expected minimal total costs during period [t+1, T [,

given sxt , wt:

V x
t (s

x
t , wt) = E

[
Vt+1(f(s

x
t ,Wt+1, t),Wt+1)|wt

]
. (6)

Using (6) and (4), the pre-decision value function can be expressed as:

Vt(st, wt) = min
xt∈X (s0,t)

Ce(s0,t, wt,xt) + V x
t (g(st,xt), wt), (7)

where Ce(s0,t, wt,xt) = E [C(s0,t,Wt+1,xt)|wt] denotes the expected value of
the one-period cost, given Wt = wt. Similarly, using (7) and (6), we obtain the
following equations:

V x
t−1(s

x
t−1, wt−1) = E

[
min

xt∈X (s0,t)
Ce(s0,t,Wt,xt) + V x

t (g(st,xt),Wt)
∣∣wt−1

]
(8)

s.t. st = f(sxt−1, wt, t− 1),

where V x
T−1(s

x
T−1, wT−1) = 0. Using the post-decision value functions, the opti-

mal decisions are:

π∗
t (st, wt) = argmin

xt∈X (s0,t)

Ce(s0,t, wt,xt) + V x
t (g(st,xt), wt). (9)
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Algorithm 1 Backward ADP algorithm

1: for t = T − 2, T − 3, . . . , 0 do
2: for n = 1, 2, . . . , N do
3: sample sx,nt from Sx and wn

t from W
4: for j = 1, 2, . . . , J do
5: sample wj

t+1 given wn
t

6: solve the minimisation problem (11)
7: end for
8: compute the sample mean (10)
9: end for
10: estimate θt by fitting V̂ x

t (sx,nt , wn
t ;θt) to {v̂x,nt }n=1,...,N

11: end for

Using pre-decision value functions, the dynamic programming problem involves
a minimisation of the expected value, (5), i.e., the solution of a stochastic optimi-
sation problem. With post-decision value functions, however, it involves solving
a deterministic minimisation problem (9), provided that the expected one-period
cost Ce is known. For this reason, we focus on the post-decision value formulation
(8).

3 Approximate dynamic programming

When dealing with large state and action spaces, classical dynamic programming
methods, such as value iteration [6], become computationally intensive, as they
entail storing values Vt(st, wt) and solving the recursive equations (4) for all
st ∈ S, wt ∈ W and t ∈ {0, 1, . . . , T −1}. Given a state, the action space is finite
but grows significantly with the number of transportation modes (|M|) and their
capacities (k(m)). As we do not assume a storage limit for the depot, however,
the size of the pre- and post-decision state space of the internal inventory system
is countable but infinite.

To address the curse-of-dimensionality in dynamic programming [5], we ap-
proximate the post-decision value function using a parameterised model, denoted
by V̂ x

t (s
x
t , wt;θt), where θt ∈ Rd is a parameter vector that allows for access to

function values for all (sxt , wt) ∈ Sx ×W.
The parameter vectors {θt}t∈{0,1,...,T−2} are estimated using backward ap-

proximate dynamic programming [5], as outlined in Algorithm 1. In each itera-
tion (time point) from t = T − 2 to 0, we obtain N sample post-decision states
of the internal inventory system (sxt ) and the exogenous random variable (wt)
from their respective space (line 3). For each sample (sx,nt , wn

t ), indexed by n,
we further sample J exogenous random variable wj

t+1, indexed by j, given wn
t

(line 5).
For the post-decision state of the internal inventory system (sxt ), we employ

the Latin hypercube sampling (LHS) method [4], known for its efficiency in
representing the sample space compared to the traditional random sampling in
Monte Carlo studies. To avoid an infinite state space for sampling, we obtain
upper bounds for the sets Sx

0 (s0,t), by generating Ñ simulation paths using a
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random policy that selects random actions, and selecting the maximum of Ñ
simulated sx0,t for each time point t. For realisations of the exogenous random
variable (wt), we sample from its stationary distribution.

For each sample (sx,nt , wn
t ), a bootstrapped estimate v̂x,nt of V x

t (s
x,n
t , wn

t ) is
computed by solving J minimisation problems (11) (line 6) and computing the
sample mean (10) (line 8):

v̂x,nt =
1

J

J∑
j=1

âj,nt where (10)

âj,nt = min
xt+1∈X (s0,t+1)

Ce(s0,t+1, w
j
t+1,xt+1) + V̂ x

t+1(s
x
t+1, w

j
t+1;θt+1) (11)

s.t. sxt+1 = g(st+1,xt+1), st+1 = f(sx,nt , wj
t+1, t).

Indeed, each iteration requires solving N × J minimisation problems.
Finally, we estimate the parameter vector θt by fitting the approximation

model V̂ x
t (s

x,n
t , wn

t ;θt) to the N bootstraped estimates {v̂x,nt }n=1,2,...,N , which
involves solving the following problem:

θ̂t = argmin
θt

1

N

N∑
n=1

L(v̂x,nt , V̂ x
t (s

x,n
t , wn

t ;θt)), (12)

where θ̂t denotes the estimated parameter vector and L represents a loss function
measuring how accurately the approximation model fits the data {v̂x,nt }n=1,2,...,N .
We employ the mean squared error as our chosen loss function, i.e.,

L(v̂x,nt , V̂ x
t (s

x,n
t , wn

t ;θt)) = (v̂x,nt − V̂ x
t (s

x,n
t , wn

t ;θt))
2.

Using the post-decision value function approximations, the optimal decisions
are estimated by:

π∗
t (st, wt) ≈ π̂t(st, wt) = argmin

xt∈X (s0,t)

Ce(s0,t, wt,xt) + V̂ x
t (g(st,xt), wt; θ̂t),

where π̂ denotes the optimal policy estimate obtained by Algorithm 1.

4 Case study

To assess the effectiveness and performance of our proposed approach, we con-
duct a case study using historical data spanning from 1 January 2014, to 31
December 2019. This dataset comprises daily records of both outflow (customer
demand) and inflow (returns from customers) of empty 40-foot dry containers
for a specific depot located in a region experiencing a high deficit of empty con-
tainers due to greater export than import. In Section 4.1, we demonstrate the
modelling of the exogenous random net inflow. Further algorithmic details, in-
cluding the approximation of the expected one-period cost function Ce and the
post-decision value functions V̂ x

t , are presented in Section 4.2.
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4.1 Modelling the exogenous random net inflow

The stochastic process of net inflow {Zt : t = 0, 1, . . . } is determined by the
model Zt+1 = h(Wt+1, t) := ⌊ηt +Wt+1⌋, where ηt represents the sum of trend
and seasonal components, Wt+1 is a random component and ⌊x⌋ denotes the
largest integer less than or equal to x ∈ R. For the exogenous stochastic process
{Wt : t = 0, 1, . . . }, we use an auto-regressive model of order 1, i.e., Wt+1 =
ϕWt + ϵt+1, where ϕ is an auto-regressive parameter with |ϕ| < 1 and ϵt+1 ∼
N(0, σ2) is a Gaussian white noise with variance σ2 < ∞. We assume that
{ηt}t∈{0,1,...,T−1}, ϕ and σ are given parameters.

To estimate the yearly trend component, we employ rolling moving averages,
computing the average of values within a window centred around each day.
This provides a smooth representation of the trend over time. For instance,
to determine the trend value for 2 July 2019, we compute the average of values
from 1 January 2019, to 31 December 2019. The yearly seasonal components
are estimated by aggregating the detrended data across the same time points
in each year. For example, the seasonal value for 2 July 2019 is determined by
averaging detrended values for each 2 July across the years 2014 to 2019. The
random component (Wt) represents the residual in the data after removing both
the trend and seasonal components. Using ordinary least squares, we obtain
parameter estimates of ϕ = 0.4660 and σ = 236.092.

4.2 Approximation strategies

For the minimisation problem in (8) to be deterministic and convex, we approx-
imate the expected one-period cost using a convex function by:

Ĉe(s0,t, wt,xt) = c⊤xt + chp(y) + clp(−y), (13)

where, considering the modelling of the exogenous random net inflow presented
in Section 4.1,

y = − µ̃

σ̃
, µ̃ = s0,t − xout

t + ηt + ϕwt − 0.5, σ̃ =

√
σ2 +

1

12
,

p(x) = −σ̃x (1− Φ (x)) + σ̃φ(x), φ(x) =
1√
2π

e−
1
2x

2

.

Here, Φ(·) and φ(x) denote the cumulative distribution function (cdf) and proba-
bility density function (pdf) of the standard Gaussian distribution, respectively.

For the post-decision value function approximation, we employ a convex
quadratic function given by:

V̂ x
t (s

x
t , wt;θt) = (sxt , wt)

⊤H(sxt , wt) + q⊤(sxt , wt) + r,

where θt consists of the columns of a symmetric positive semi-definite matrix

H ∈ R(l(M)+2)×(l(M)+2), q ∈ Rl(M)+2 and r ∈ R, i.e., d = (l(M)+3)×(l(M)+2)+1.
Note that the minimisation problem in (8), with V x

t and Ce replaced by V̂ x
t and
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Ĉe, respectively, simplifies to a convex integer program (CIP) with upper and
lower bounding constraints, since the transition function g(st,xt) is an affine
transformation.

To reduce computation time, we further approximate the problem (11) by re-
laxing the integrality constraints in X (s0,t+1). This allows us to employ gradient-
based methods for optimization.

5 Computational results

We fix the length of the time horizon T to be 14 days and select the period from
1 April 2019 to 14 April 2019 for trend and seasonal parameters ηt. The case
study involves three transportation modes—truck, train and barge—available
for repositioning-in orders, each mode indexed by 1, 2, and 3, respectively. All
computational experiments discussed in this section are conducted on an AMD

EPYC 7763 64-Core Processor.
To evaluate the performance of the optimal policy estimate π̂, we generate

scenarios, each representing a sample realisation of the initial pre-decision state
s0 and the exogenous random variables wt from t = 0 to T . The collection of
generated scenarios, indexed by ω, is denoted by the set Ω. For the initial pre-
decision state (s0), each component si,0 is sampled from its respective space Si,
i = 0, 1, . . . , l(M) − 1, using the LHS method. The upper bound for S0 is set to
103. The initial exogenous random variable W0 is sampled from its stationary
distribution, while the subsequent variables W1, . . . ,WT are generated using the
AR(1) model presented in Section 4.1. The number of scenarios |Ω| is set to 104.

We measure the performance of the estimated optimal policy π̂ by average
total costs across all scenarios, denoted by ρ(π̂):

ρ(π̂) =
1

|Ω|

|Ω|∑
ω=1

T−1∑
t=0

C(s0,t, wt+1(ω), π̂t(st, wt(ω))),

where wt(ω) represents the realisation of the exogenous random variable Wt in
scenario ω.

5.1 Convergence

We investigate the convergence of Algorithm 1 by varying the sampling sizes,
i.e., N and J . For each combination of (N, J), we perform 10 replications of Algo-
rithm 1, using different random seeds to sample {sx,nt }n=1,...,N and {wj

t+1}j=1,...,J .
The performance of each replication is evaluated using the same set of scenar-
ios Ω. The sample mean of ρ(π̂) across 10 replications and its 95% confidence
interval for each combination (N, J) are illustrated in Figure 1.

The optimal policy estimates π̂ demonstrate convergence as both the number
of samples of the post-decision state sx,nt and the exogenous random variable
wj

t+1 increases. With J fixed at 15, the average total cost decreases by 17% from
N = 25 to N = 750. Likewise, with N fixed at 750, the cost decreases by 6% as
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Fig. 1. Average total costs as a function of the number of samples.

J increases from 1 to 45. Beyond N > 750 and J > 45, the average total cost
remains relatively steady, with variations within the range of 0.2% to 0.9% and
0.05% to 0.5%, respectively, which confirms the convergence. We designate the
combination (N, J) = (750, 45) as the baseline for subsequent analysis due to its
effective and efficient performance.

5.2 Policy performance

To assess the performance of our baseline policy, we compare to a policy that
randomly places repositioning-in orders at each point in time. The red dotted
line of Figure 1 represents the average total costs of this random policy. Average
total costs of the baseline policy estimate is, on average, 41% lower than that of
the random policy, clearly demonstrating the ability of our algorithm to achieve
cost efficiency.

We continue our analysis of the performance of the optimal policy estimate π̂.
The first panel of Figure 2 illustrates the on-hand inventory level s0,t, the number
of leased empty containers [s0,t − xout

t + zt+1]
− and the net inflow zt+1 for each

time point t = 0, . . . , T − 1. The second panel depicts the repositioning-in and
-out behaviour of the policy over the time horizon. These values are averaged
across all scenarios in Ω.

Towards the very end of the time horizon, particularly at t = 13, the pol-
icy places relatively more repositioning-out orders, leaving only the necessary
amount for optimising the one-period cost and repositioning out the rest. Evi-
dently, during this phase, the policy has less incentive to maintain the on-hand
inventory level as high as in preceding periods, since future customer demands
are not considered. Note that the pre-decision state of the inventory system at
the end of the time horizon does not affect the total cost, provided that VT ≡ 0.
While this assumption may not fully reflect reality, it is less of an issue, given
that we frequently rerun the algorithm and update the policy, e.g., on a weekly
basis. Therefore, our focus lies on understanding the behaviour of the policy
during the initial and middle phases of the time horizon.
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Fig. 2. Performance of the optimal policy estimate π̂.

The inventory system experiences average net outflow (the negative of net
inflow) throughout the entire time horizon, reflecting the serial correlation of
exogenous random net flows. In response, average on-hand inventory level rises
over time, reaching a level approximately 3-4 times higher than the average net
outflow to avoid expensive leasing costs. Barges serve as the primary source for
repositioning-in due to their low cost. Trucks, while the fastest but the most
expensive, are rarely used except at the beginning of the time horizon (t = 0
and t = 1), when immediate replenishment of empty containers is necessary due
to the low on-hand inventory level. Leasing is likewise necessary at the beginning
of the time horizon.

We further investigate the impact of multiple transportation modes, using
Figure 3. Each pair of bars in the figure represents the average values across
all scenarios in Ω. More specifically, the bar on the left-hand-side indicates the
average total costs of repositioning-in and -out, holding and leasing containers
over the entire time horizon, while the right-hand-side bar illustrates the average
total number of containers stored in the inventory and leased throughout the
time horizon.

The first panel compares cases in which different transportation modes are
accessible. Introducing either train or truck in addition to barge results in total
cost reductions of 17.92% and 16.24%, respectively, compared to when only
barge is available and the other two modes are unavailable. These reductions
are primarily due to maintaining 70.62% and 29.06% more containers in the
inventory and leasing 52.39% and 47.54% fewer containers, respectively. This
indicates that the ordering capacity of barge alone is insufficient to maintain the
on-hand inventory level as high as required. When all transportation modes are
available, on the other hand, the total cost decreases by 26.05%, alongside storing
61.58% more containers in the inventory and leasing 61.39% fewer containers,
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Fig. 3. Impact of available transportation modes (first panel) and sensitivity analysis
to key parameters ϕ, σ and cl (second, third and fourth panels, respectively).

compared to when only barge is available. This represents an even greater cost
reduction than when only two modes are available, underscoring the significance
of leveraging all transportation modes.

5.3 Sensitivity Analysis

As also depicted in Figure 3, we conduct sensitivity analysis on key parameters
to examine their impact on the stability of the optimal policy estimate discussed
in Section 5.2.

The second panel in Figure 3 demonstrates the impact of serial correlation
for net container inflows, determined by the exogenous variables. As previously
indicated, the higher the serial correlation of net inflows, the higher the costs.
In fact, alternating between inflow and outflow will stabilise the inventory level
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and avoid excessive holding and leasing. With serial correlations of the exogenous
random variables below the baseline value of ϕ = 0.466, the impact on the total
cost is minimal, with differences ranging from 3.45% to 7.01%. For values above
ϕ = 0.699, however, cost differences become significant. As the auto-regression
parameter ϕ rises from 0.466 to 0.699, 0.816 and 0.932, total costs increases
by 14.57%, 34.94% and 100.97%, respectively, emphasising the importance of
accounting for such correlations.

The panel also illustrates the effect of incorporating the exogenous variable
wt into the post-decision value function V x

t . When the serial correlation of the
exogenous random variables is less than or equal to 0.466, the policy estimate
based on V x

t (st) is nearly the same as the one derived from V x
t (st, wt), with dif-

ferences ranging from 0.1% to 0.7%. When the serial correlation exceeds 0.466,
however, the policy estimate incorporating the exogenous variable clearly out-
performs the alternative policy estimate. As the auto-regression parameter ϕ
increases from 0.583 to 0.932, the policy estimate based on V x

t (st, wt) yields a
reduction in total cost ranging from 2.3% to 25%. This emphasises the impor-
tance of incorporating the exogenous variable into the value function when the
serial correlation is significant.

The third panel in Figure 3 illustrates how costs are affected by the variance of
net container inflows, determined by the variance σ of the white noise ϵt, affecting
the exogenous variable wt. As the variance increases, the total costs tend to rise,
primarily due to increased in the total leasing cost. For instance, a 100% increase
in variance leads to a 45% rise in the total cost. More specifically, the total costs
of repositioning-in and -out, holding and leasing containers increase by 14%, 78%,
42% and 77%, respectively. Although the total repositioning-out cost experiences
the highest increase, it only makes up about 0.1% of the total cost. The total
leasing cost, on the other hand, comprises 37% of the total cost, and thus, is the
main driver behind the cost increase. This indicates that significant fluctuations
in net inflow necessitate higher inventory flexibility, which is provided by leasing
or repositioning out more containers.

The last panel depicts how changes in the unit leasing cost cl affect the
total cost. As the unit leasing cost rises, naturally, the total number of leased
containers decreases, whereas the total on-hand inventory level increases. For
instance, with a 100% increase in the unit leasing cost, the policy leases 11% fewer
containers and maintains on-hand inventory levels 41% higher by placing more
repositioning-in orders, resulting in a 41% increase in the total repositioning-
in cost. Consequently, the total cost increases by 59%. When the unit leasing
cost decreases by 75%, however, the policy leases many more containers, in fact
730% more, leading to 7.87% lower total cost compared to the baseline but
15.66% higher total cost compared to when the unit leasing cost decreases by
50%. Indeed, when the unit leasing cost approaches the unit repositioning-in
cost, our algorithm exhibits limited learning capability. In practice, however,
leasing costs typically far surpass repositioning-in costs, thereby validating the
suitability of our approach for real-world applications.
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6 Conclusion

This paper presents a dynamic and stochastic inventory management model for
empty containers with multiple transportation modes, lead times, lost-sales and
correlated exogenous variables, employing approximate dynamic programming
with convex quadratic value functions. The proposed ADP algorithm converges
with a modest sampling size and considerably outperforms a random policy.
Furthermore, we demonstrate the importance of incorporating exogenous in-
formation into the value function, especially in scenarios with significant serial
correlation.

Through sensitivity analysis, we demonstrate effective management of in-
ventory levels and container leasing amidst varying factors. We highlight the
benefits of leveraging both flexible yet costly transportation modes and inflexi-
ble yet economical options. For our case study, we obtain cost savings of up to
17.92% by introducing either train or trucks in addition to barge, and savings
of 26.05% by allowing for all three modes of transportation. We show that it is
less expensive to manage a container depot with low variance and serial corre-
lation in exogenous container demand and returns. Real data, however, reveals
significant variance and correlation. Moreover, increases in variance and corre-
lation will substantially increase costs, illustrating the importance accurately
modelling exogenous in- and out-flows to and from the depot. Finally, as leasing
costs largely drive repositioning decisions, accurate estimates of such costs are
crucial.

Future directions include exploring multiple depots and diverse distribution
models for inflows and outflows, as well as investigating alternative value function
approximations and/or closed-form solutions to the optimisation problems to
enhance computational efficiency.
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Abstract. We study the multiobjective hyperparameter optimization
problem that arises in classi�cation and regression type settings in re-
newable energy markets. Examples of objectives include accuracy, com-
putational time, and bias. Models can range from complex decision trees
and neural networks to simpler KNNs (K-Nearest Neighbours). Multi-
objective hyperparameter optimization has entailed deployment of both
Bayesian and Direct-Search methods individually in the past. In this
paper, we propose a switching framework that e�ectively uses both of
these methods in an iterative fashion. As an additional contribution,
we propose a warm-start based training for the machine learning mod-
els, which e�ectively deploys the bene�ts of Direct-Search methods. We
compare our method with traditional Bayesian and Direct-Search meth-
ods by using multiple real-world datasets and machine learning models.
We observe a clear-cut computational advantage in using our �combined
method� and propose to extend this to general derivative-free regimes in
the future.

Keywords: Classi�cation · Regression · Multiobjective · Energy Mar-
kets.

1 Introduction

Multiobjective versions of the unit commitment problem [30] aim at the re-
duction of CO2 emissions in addition to cost minimization and penetration of
renewable power. These can be put forth in a two-level form as follows.

{Pout} min
s∈S(z)

G(s, z) = [g1(s, z) . . . gp(s, z)]

{Pin} min
θ∈Θ,z∈Z(θ)

F (θ, z) = [f1(θ, z) . . . fm(θ, z)] .

The unit commitment problem is de�ned by Pout, where gi's denote objectives
on costs or emissions. The variables s refer to decisions on generation levels and
the set S(z) encompasses the constraints on generation levels, ramp rates, and
consumer demand. The machine learning problem Pin, aims to accurately esti-
mate the generation levels. Here, θ refers to model hyperparameters, z refers to
model parameters, and fi's can refer to metrics like balanced accuracy, precision,
recall, and mean bias error. Sets Θ and Z refer to constraints on hyperparameters
and model parameters respectively.
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Renewable energy planning predominantly focuses on solar and wind power
based generators. Wind power forecasting is aimed at multi-class classi�ca-
tion [24, 2], where wind-speeds fall under discrete buckets (say, 0−5 mph, 5−20
mph etc.). Solar energy based problems rely on PV-cells and have been viewed
from a regression angle [29, 2]. Models ranging from Gradient Boosted Trees [27]
and Neural Networks [2] to SVMs (Support Vector Machines) [28] and KNNs
(K-Nearest-Neighbours) [17] have been studied in detail in both contexts. We
note that all the above works have predominantly focused on single-objective op-
timization. For a complete survey, the reader is asked to refer to [24, 29]. Some
works have focused on biobjective versions of the problem [14]. However, the
focus in this case was on only some problem-speci�c metrics related to accuracy.
Recent work [19] motivates the need for multiobjective learning based formula-
tions in the context of renewable energy, bearing in mind all the aforementioned
factors. Algorithms in lieu of general problems in multiobjective machine learn-
ing can be vaguely classi�ed as follows.

� Hyperparameter Optimization (HPO) [4, 6]: Here, the focus is on tuning θ.
The model parameters z∗ are a consequence of training machine learning
models on standard losses like cross entropy. Note that G(z) refers to one
such standard loss function (denoted below).

min
θ∈Θ

F (θ, z∗(θ)) = [f1(θ, z
∗(θ)), . . . , fm(θ, z∗(θ))] , z∗(θ) = argmin

z∈Z(θ)

G(z).

� Model Parameter Optimization (MPO): MPO attempts to solve the following
model training problem: z∗ = argmin

z∈Z(θ∗)

F (θ∗, z). Here, θ∗ is estimated prior to

training by subject matter expertise. Their applicability is restricted due to
practical structural and implementation aspects.

� Other schemes: Some works [20] have proposed fusion type schemes that de-
ploy the best of both worlds (HPO and MPO). However, the applicability of
fusion type schemes faces limitations similar to MPO. Multi-objective learn-
ing also has been studied from the angle of �multi-task learning� (MTL) [25],
where the aim is to �simultaneously learn� multiple models in z (based on
multiple data sources). This is di�erent from our framework, where we intend
to have �one model� that needs to be optimized across all objectives. Lexi-
cographic type non-Pareto methods have also been considered in literature.
But, their use is restricted to problems with stylized structure on objectives.

In this work, we consider the hyperparameter optimization (HPO) portion of
the problem. In the context of HPO, Bayesian optimization (BO) methods have
found great traction over the last two decades [4, 12, 15]. BO methods have been
observed to be robust for smaller dimensional settings with smooth objective
functions. Besides BO, search type methods have also been deployed consider-
ably for HPO. Search methods can be two fold: either based out of Direct-Search
(DS) [3, 5] or genetic algorithms [13]. While genetic algorithms have also proved
to be very e�cient, we focus on using DS, due to the latter's convergence guar-
antees. In this work, we propose a �combined� method that uses the strengths
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of both BO and DS. Our method alternates between BO and DS by means of
a switching mechanism that is dependent on objective descent. To incorporate
multiple objectives, we use weights from a uniform mesh and solve a sequence
of scalarized single objective optimization problems. Our key contributions are
three fold.

1. Combined method : As stated, we intend to use the bene�ts of both BO and
DS type methods.
� Why alternate?: BO examines objectives in a global sense and can po-
tentially lead to many iterations that do not yield in descent. On the
other hand, DS is very bene�cial in local examination and has shown
signi�cant promise in discrete settings like ours, where there are fewer
variables (dimension less than 10). Additionally, the nature of the span-
ning directions in the case of DS helps with warm-starting the process of
model training. However, DS can stagnate at locally optimal solutions.
This necessitates the reverse switching to a global optimization technique
like BO.

� We compare our combined method against state-of-the-art BO and DS
type solvers. We use three widely used machine learning models, each
belonging to a di�erent class for our studies: XGBoost (decision trees),
ResNets (Neural Networks), and KNNs (K-Nearest-Neighbours - unsu-
pervised model). We use a comprehensive set of metrics and consider
both regression and classi�cation problems.

2. Warm Starting: Deploying our problem structure, we use a number of low-
budget evaluations, which helps in improving our computational e�ciency.

3. Practical Data: We obtained real weather data from [23] across two locations
in Germany, namely Berlin and Stuttgart. The related target generational
data was obtained from [22] for the �rms, 50hertz and Transnet BW (in
both locations). In summary, we built four real-world datasets, which can be
readily used for benchmarking purposes.

The rest of the paper is organized into four sections. Section 2 discusses the
preliminaries related to multiobjective learning. Section 3 proposes our algo-
rithm. Section 4 tests our algorithm and compares it with other methods on real
datasets. We conclude in Section 5.

2 Preliminaries

Prior to beginning our discussion, for clarity, we de�ne our notation in table 1.
We formally restate the problem in (1) for clarity.

min
θ∈Θ

F (θ) = [f1(θ), . . . , fm(θ)] , fi(θ) = fi(y
pred, ytrue), where

z∗θ = argmin
z∈Z(θ)

G(z, ytrue), ypred = M(z∗θ ). (1)

Here, the individual functions are evaluated as a consequence of model training
on standard losses G. We also note that the above formulation extends to several
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N No. of data samples
t Index/time-stamp of a datapoint
xt Data feature vector at time t
ytrue
t True label at time t

ypred
t Predicted labels at time t

M Machine Learning model
G Standard loss function
m No. of objectives
fi ith objective function
n Problem dimension
θ Model hyperparameters
z Model parameters

Table 1: Notation.

generic multiobjective machine learning problems. The hyperparameters θ de-
�ne the architecture of the machine learning model, eg: no. of leaves/tree depth
in decision trees, no. of layers/neurons in neural networks, and no. of clusters
in KNNs. Model parameters z refer to the individual weights that arise in the
model M . Say, in the case of neural networks, these refer to the weights associ-
ated with each neuron. Prior to delving into algorithmic aspects, we �rst look
at some fundamentals of such multiobjective formulations in renewable energy
predictions.

2.1 Metrics

The metrics can be classi�ed into three di�erent forms as follows. For compre-
hensive details, the reader is asked to refer to [19].

1. Accuracy type indicators (classi�cation and regression): Examples include
False Positive Rate error (FPRerr), Balanced Accuracy, False Negative Rate
eror (FNRerr), F1-score, R-square, and Mean Square Error (MSE). Here,
FPR (error) is a classi�cation type metric, while MSE is used in regression.

2. Bias type indicators: Examples include fairness type metrics like Demo-
graphic Parity Di�erence (DPD) and elementary metrics like Mean Bias
Error (MBE). Metrics like MBE are common in regression, while DPD type
metrics are found usually in classi�cation regimes.

3. Model speci�c: Examples include blackbox objectives like computational
time and closed-form objectives like sparsity.

FPRerr(.) =

∑N
t=1(1− ytrue

t )(ypred
t (θ, z))∑N

t=1(1− ytrue
t )

, MBE(.) =
1

N

∣∣∣∣∣
N∑
t=1

(
ypred
t (θ, z)− ytrue

t

)∣∣∣∣∣.
2.2 Algorithmic Fundamentals

A majority of the methods that have been studied in literature deal with esti-
mating the Pareto frontier of the problem of interest. A Pareto frontier refers
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to the set of non-dominated solutions that solve the multiobjective problem.
Non-dominated points can be formally de�ned as follows.

De�nition 1. A point θa is said to dominate point θb i� fj(θ
a) < fj(θ

b) for at

least one index j and fi(θ
a) ≤ fi(θ

b), ∀ i ̸= j. That is,

θa ≽ θb i� fj(θ
a) < fj(θ

b) and fi(θ
a) ≤ fi(θ

b).

Noting that non-Pareto methods are mostly application speci�c, we restrict our
focus to Pareto methods and classify them as follows.

Scalarization [20, 11]: Here, a series of scalarized problems are solved for

di�erent choices of weights ω: min
θ∈Θ

m∑
i=1

ωifi(θ). Note that
∑m

i=1 ωi = 1. We also

note that nonlinear choices of weights [11] can also be deployed.
Epsilon constraints [21]: Here, combinations of objectives are posed as

constraints and the following is solved for di�erent sequences of ϵ.

min
θ∈Θ

f1(θ), subject to: f2(θ) ≤ ϵ2, . . . , fm(θ) ≤ ϵm.

Say, if objectives {fi}mi=1 are normalized between 0 to 1, then, ϵ is varied from
0 to 1 element wise and the process is repeated. For the next set, f2 is moved to
the objective and the next sets are continued likewise for the other objectives.

Search type methods [5, 13]: For a current iterate θk, stepsize β, and
spanning direction set Dk, a non-dominated point y ∈ Θk (in lieu of de�nition
1) is attempted to be estimated in the search space Θk. Note that Θk is de�ned
as follows: Θk =

{
θ|θ = θk + βdk, dk ∈ Dk ⊆ D

}
.

2.3 Hyperparameter Learning

Recently, the hyperparameter optimization problem has been studied signi�-
cantly from a multiobjective angle [4, 5, 12]. For completeness, we summarize
the basics of both BO and DS type schemes as follows.

Bayesian schemes [15, 4]: Here, the objective function fi is assumed to
follow a Gaussian Process: fi(θ) ∼ N (µi(θ), σ

2
i (θ, θ)). These functions µ and σ

take the following form and are iteratively updated based on evaluations of fi.

σ2(θ, θ) =

k(θ1, θ1), . . . , k(θ1, θn)
...,

. . . ,
...

k(θn, θ1), . . . , k(θn, θn)

 , k(θj , θk) = γe−β∥θj−θk∥2 , and µ(θ) = µ.

Note that k(θ,θ
′
) refers to kernel functions. The problem hence boils down to

the estimation of scalar parameters, µ, γ, and β. At a high level, given t = 0 and

samples R0 =
{
θj , f(θj)

}N

j=1
, BO can be summarized as follows. For further

details, the reader is asked to refer to [26, 15].

1. Obtain an estimate of µ and σ based on Rt using Gaussian regression.
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2. Set t = t + 1. Solve the following problem with the acquisition function α:
minθ∈Θ α(µ(θ), σ(θ)). Note that the acquisition function α is an approxi-
mation or an indicator of the objective function fi.

3. Based on the solution θt+1 to the above, evaluate the function f(θt+1). Up-
date Rt+1 = Rt ∪

{
θt+1, f(θt+1)

}
. Examine termination criteria based on

f(θt+1).

Direct-Search [5, 3]: Given k = 0, ∆0 = δ0 = 1, θ0, a set of spanning
directions D, and a subset A0, a simple version is stated below.

1. Perform local search around �ALL� evaluated points indexed by j: f(ψk) <
f(θk), ψk = θj +∆kdk, ∀j, ∀dk ∈ Ak.

2. If successful, set θk+1 = ψk. Increase ∆k.
3. Else, perform the following step and decrease ∆k: f(ψk) < f(θk), ψk =
θk + δkd,∀d ∈ D.

4. If successful, update θk+1 and increase δk. If step 3 is not successful, decrease
δk. Set k = k + 1.

3 Algorithms

In this section, we propose a novel algorithm that sequentially alternates between
DS and BO based on certain pre�xed criteria. To retain our global optimization
framework, we initiate our method with BO. When BO becomes expensive and
fails in improving the objective signi�cantly, our framework switches to DS.
On the other hand, we switch from DS to BO, when the algorithm has spent
su�ciently long in DS (for a set of evaluations) �and� if DS does not yield descent
directions. We further note the following important points prior to stating our
formal version of the algorithm.

� Weights: To solve the multiobjective optimization (MOO) problem (1), we
solve a sequence of single objective problems, each parameterized by a com-
bination of weights [20]: minθ∈Θ

∑m
i=1 wifi(θ). These weights are generated

from a uniform distribution, where w ∈ Wuniform and
∑m

i=1 ωi = 1. While
there are several ways to solve the MOO, we resort to weights, given the es-
tablished robustness of this framework in literature. At this point, we specif-
ically note that the intention of our work is to show only the bene�t of the
combined method over BO or DS. We do not aim to compare the perfor-
mance of weighted schemes over other possible schemes of multiobjective
optimization.

� Our proposition is very di�erent from direct search methods that use Bayesian
fundamentals to de�ne the scope of search directions [1]. Our work on the
contrary uses search directions to enhance Bayesian optimization.

3.1 Combined method

For each weighted combination, we attempt to solve the scalarized single objec-
tive problem to complete optimality. Prior to formally stating the alternating
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θinit Initial hyperparameter con�guration
τoverall Total computational time budget
ωi Weight for objective i
τBO Time budget for single iteration using BO
τ search Time budget for single iteration using DS
τk Time taken for training the model at iteration k

Table 2: Notation for the algorithmic parameters.

method, we de�ne the algorithmic parameters in table 2. Our algorithm alter-
nates between BO and DS based on two switching criteria de�ned as follows.

Switching from BO to DS: BO in contrast to DS can lead to new evalua-
tions signi�cantly di�erent from the current iterate. Warm-starting model train-
ing in an iteration of BO is therefore di�cult. Bene�ts of �exploration� (new
points) in BO are usually less useful in comparison to �exploitation� (investiga-
tion with current points) when the model training times are high and when there
is no observed descent. This is put forth by our following switching condition.

f(θk) > f(θk−1), τk > τBO.

Switching from DS to BO: Search directions generated by DS usually
are incremental in one or two elements of θ. DS also operates within a smaller
search radius (in comparison to BO). In the context of our problem, this implies
that the hyperparameters do not di�er much between successive iterations. This
naturally aids with warm-starting the model training process, thereby helping
with cheaper evaluations. With the aim of using this to the maximum, we do
not demand descent from search in one evaluation. Instead, we switch from
DS to BO, only if the search fails to improve upon the objective over a set of
evaluations. The switching condition is stated as follows.

f(θk) > f(θk−1), and
∑L

l=0 τk,l > τ search.

Note that the integer L is not determined prior to running the algorithm and
this is dependent on training times at each evaluation. Formally, the combined
method is presented in Algorithm 1. The switching criteria are formally de�ned
in Algorithm 2. Note that we use the notation for Rk, Dk, and Ak as de�ned
in section 2. For completeness, we speci�cally note that τ c,search refers to the
total time across multiple evaluations of search and this is set to zero when the
algorithm switches from BO to DS.

Convergence Aspects: For our problem statement, we do not have a formal
proof of convergence yet and we intend to focus on the same as part of our future
work. It can be observed that by the design of our algorithm, if unsuccessful,
the time spent by DS is �nite. This intuition helps forming the basis behind the
theoretical aspects.

Warm Starts: Noting that hyperparameters are mostly discrete, using sim-
ple coordinate directions for search is a great alternative. For instance, let us
consider the case of training with XGBoost and two hyperparameters, θ1 and
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Algorithm 1 Multi-objective optimization using BO and DS

Input: θinit, τ
overall, ω ∈ Wuniform, τBO, τsearch

Output:
{
θk

}
∀k

- �nal repository (trajectory) of points for the problem f̂(θ, ω) =
∑m

i=1 ωifi(θ).

1: Initialize:
2: k = 1 (Number of iterations) and θ0 = θinit

3: Set R0 =
{
θ0, f̂(θ0)

}
4: current_method = “BO” (Start with BO)
5: τ = 0 (Current computation time)

6: while τ < τoverall do

7: if current_method == “BO” then

8: Obtain the acquisition function αk with samples Rk

9: θk ← BO(θk−1)

10: Evaluate f̂k =
∑m

i=1 ωifi(θ
k) and obtain the corresponding computational time τBOk

11: τ ← τ + τBOk
12: else if current_method == “search” then

13: θk,l ← search(θk−1)

14: Evaluate f̂k,l =
∑m

i=1 ωifi(θ
k,l) and obtain the corresponding computational time

τsearchk,l

15: τ ← τ + τsearchk,l

16: τc,search ← τc,search + τsearchk,l

17: l = l + 1
18: end if

19: Use the switching criteria in Algorithm 2

20: Update Rk = Rk−1 ∪
{
θk, f̂(θk)

}
for BO.

21: Update Ak and Dk similarly for search
22: k ← k + 1
23: end while

24: Return all evaluated points for
{
θk

}
∀k
.

θ2. Let the hyperparameters respectively refer to the number of trees and tree
depth. Say, at iteration k, we have θk1 = 10 and θk2 = 5. Suppose, we use the

coordinate direction
(
1 0

)T
. Then, for the (k+1)th iteration, we have θk+1

1 = 11

and θk+1
2 = 5. This implies that we have one additional tree/round for model

training. In this case, for the initial solution to the model training process, we
simply use the weights from the previous iteration and set the weights of the

new tree to be 0. That is, z0,k+1 =
(
(z∗,k)T 0

)T
. This immensely reduces the

model training time.
Hypervolume Indicator: Since the methods of interest work on di�erent

classes of objectives, we deploy the widely accepted hypervolume indicator [10]
as our yardstick for all comparisons. Post normalization of objectives between
0 and 1 (0 is best and 1 is the worst with respect to minimization), we use the
unit vector as a reference point for hypervolume computation.

4 Numerics

This section analyzes the performance of our combined method, Bayesian op-
timization (BO), and Mesh Adaptive Direct Search (MADS). For our experi-
ments, we used three machine learning models, namely, ResNet [16], XGBoost [8],
and K-Nearest Neighbors (KNN) [9]. Details on our use cases are stated in the
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Algorithm 2 Switching Criteria

Input: current_method, f̂k−1(θk−1), f̂k(θk), τBOk , τc,search

Output: current_method.

1: if current_method == “search” then

2: if f̂k,l(θk,l)− f̂k−1(θk−1) < 0 then

3: θk = θk,l

4: Initialize search counter τc,search = 0 and l = 0
5: end if

6: if (τc,search > τsearch) AND f̂k−1(θk−1)− f̂k(θk) < 0 then

7: θk = θk−1

8: current_method = “BO”
9: end if

10: else if current_method == “BO” then

11: if (τBOk > τBO) AND f̂k−1(θk−1)− f̂k(θk) < 0 then

12: current_method = “search”

13: Initialize search counter τc,search = 0 and l = 0
14: end if

15: end if

16: Return updated current_method.

forthcoming paragraph. Our experiments were performed on an NVIDIA RTX
3080, with an Intel Core i5-12600K processor and a memory (RAM) of 32GB
4800MT/s DDR5.

Data: We used four real world datasets for this study. The datasets are
based out of two locations, Berlin and Stuttgart in Germany. For each location,
we further studied two types of data: solar energy and wind energy. We adopted
a similar formulation style as with a host of previous works in literature [24, 29].
We studied a regression system for solar energy data and presented a multi-class
classi�cation type framework for wind energy data. Data processing involved two
steps. First, we obtained feature data from [23]. Feature information represents
structured data regarding weather factors like temperature, humidity, and wind-
speed. There were twenty three input features in all our datasets. Second, this
feature information was integrated with the actual energy generation (target
variable). The generational data was obtained from [22]. The data covers the
entire time period between January 1st, 2018, to December 31st, 2019. Our
implementation (codes + data) is publicly available 1. For the solar regression
task, we re�ned the dataset by excluding time periods when solar power is not
available (e.g., nighttime hours, 10 p.m. to 5 a.m.). For wind energy multi-class
classi�cation, we standardized all features (excluding the target variable) using
Z-Scores. We divided the actual wind power generation data into several nearly
equal sized classes. We chose �ve classes for wind-energy based problems to
ensure that the data is reasonably balanced (choice of lower or higher numbers
lead to highly imbalanced data). Our methodology can easily be extended to
any number of classes. Each solar dataset �nally contained about 36, 000 data
points and each wind energy dataset consisted of roughly 70, 000 data points.
All the datasets were split into training, test, and validation sets using an 80% :
10% : 10% ratio.

1 The codes are available at https://scm.cms.hu-berlin.de/aswinkannan1987/lion.
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Evaluation metrics: We considered three types of metrics, namely, accu-
racy, bias, and complexity. In the context of the solar regression problem, the
metrics employed include mean squared error (MSE), mean bias error (MBE),
and model complexity. For the wind energy multi-class classi�cation, the chosen
metrics were accuracy error, demographic parity di�erence (DPD), and model
complexity. We elaborate on the model complexity portion in the forthcom-
ing portions of this section. Given a dataset with H features and N samples,
we de�ne ytrue and ypred as the true and predicted labels respectively. Let
y =

{
ytrue, ypred

}
and yd = ytrue − ypred. Then, mean squared error (MSE),

mean bias error (MBE), and accuracy error (ACE) can be calculated as follows.

MSE(y) =
1

N

N∑
i=1

(ydi)
2, MBE(y) =

1

N

∣∣∣∣∣
N∑
i=1

ydi

∣∣∣∣∣ , ACE(y) = 1− 1

N

N∑
i=1

|ydi| .

Let ai ∈ {0, 1} be a fairness feature of the i-th data sample. Then, the index
sets of (ai)

N
i=1 can be de�ned as follows.

A0 := {ai = 0 for i ∈ {1, ..., N}}, A1 := {ai = 1 for i ∈ {1, ..., N}}.

Here, A0 and A1 contain N0 and N1 samples respectively, and N = N0+N1. We
used the metrics, demographic parity di�erence (DPD) and symmetric distance
error (SDE) to assess bias along the lines of previous literature [20, 19, 7].

DPD(y) =

∣∣∣∣∣
∑

i∈A0
ypred
i

N0
−

∑
i∈A1

ypred
i

N1

∣∣∣∣∣ , SDE =
1

H

H∑
c=1

|∆FNR(c)−∆FPR(c)| .

Here, c is the c-th feature, while ∆FNR(c) and ∆FPR(c) represent the false
negative rate (FNR) and false positive rate (FPR) of the binary feature c.

Model Complexity and Summary: The KNN is a simple model. Hence,
we considered only the �rst two metrics and excluded model complexity for
our study. In ResNet type models, WSpar represents the proportion of zero or
nearly zero weights. We chose the weight density, “WDens = 1 −WSpar” as
our complexity metric (that we intend to minimize). The goal is to simplify the
network by reducing the number of active connections. For the XGBoost model,
we chose a similar metric, average depth (ADep) to measure complexity
(deeper tree implies a complex model). Table 3 summarizes the metrics used by
each model for di�erent problems.

Table 3: Metrics to minimize in di�er-
ent models.
Problem type Model Metrics

Solar
regression

ResNet MSE, MBE, WDens
XGBoost MSE, MBE, ADep
KNN MSE, MBE

Wind
classi�cation

ResNet ACE, DPD, WDens
XGBoost ACE, DPD, ADep
KNN ACE, SDE

Table 4: Hyperparameters used for op-
timization

Model Hyperparameters lb ub

ResNet
no. of residual blocks 1 15

no. of neurons 8 128
dropout rate 0.01 0.5

XGBoost

no. of estimators 1 50
max depth 2 20
max leaves 1 20

min child weight 0.1 5
gamma 0 0.5

KNN
no. of neighbors 1 20

ϕm 1 4
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Selected solvers and Results: As mentioned earlier, we used the �hyper-
volume� as the indicator of performance for all our studies. When using weights,
the trajectory of iterates were aggregated across all combinations of weights and
the hypervolume was computed with these �nal set of points. For the weighted
version of Bayesian optimization (BO), we used a standard Surrogate Model
Toolbox (SMT) solver, known as E�cient Global Optimization (EGO) [18]. For
the weighted version of search, we used a weighted version of MADS [3]. We
note that both these solvers are tailored for single objective optimization. We
also tested the performance with solvers speci�cally designed for multiobjec-
tive optimization. In the case of BO, USeMO [4] (Uncertainty-aware Search
framework for optimizing Multiple Objectives) was deployed. Similarly for DS,
a newer multiobjective solver, namely DMulti-MADS [5] was deployed. For
the combined method, the time thresholds were set to

{
τBO = 2, τsearch = 1

}
,{

τBO = 1, τsearch = 0.5
}
, and

{
τBO = 12, τsearch = 6

}
respectively for the ResNet

model, the XGBoost model, and the KNN model. We note that this di�erence
arises due to di�erent complexities and training times across models. For bi-
objective problems, we explored �ve uniform weights: (wi)

2
i=1 ∈ {0.25i, 1− 0.25i},

where i ∈ {0, 1, 2, 3, 4}. For tri-objective problems, the weight selection expanded
to more combinations as follows: wT =

(
w1 w2 w3

)
= 1/3

(
i1 i2 i3

)
,where,

{i1, i2, i3} ∈ {0, 1, 2, 3} and i1 + i2 + i3 = 1. The summary of the hyperpa-
rameters used, and their corresponding lower bounds (lb) and upper bounds
(ub) are listed in Table 4. Note that ϕm denotes the Minkowski metric's power
parameter. The results from our computation are shown in Figures 1 and 2. The
results are individually discussed in the forthcoming paragraphs.

Berlin solar regression:We can see that our combined method consistently
performs better than the other algorithms across all models. While weighted
MADS and weighted BO approaches do improve over time, their progress is
slower and tends to plateau. An important observation is that with ResNet and
XGBoost models, the hypervolume improvement with the combined method is
signi�cantly greater than that of the weighted BO. However, in the case of the
KNN model, the hypervolume improvement of the combined method is modest
and about 10% higher than that of the weighted BO. This can be attributed
to the simplicity of the KNN model with only two hyperparameters and the
possible attainment of the best level of e�ciency.

Stuttgart solar regression: As earlier, it is observed that the combined
method achieves better results than the weighted MADS and weighted BO meth-
ods for all models. The ResNet model paired with the combined method once
again demonstrates the most promising outcomes. These �ndings suggest the
combined method's adaptability and e�ciency in solving regression problems.

Berlin wind multi-class classi�cation: It can be noticed that both the
combined method and the weighted MADS demonstrate competitive perfor-
mance. They achieved similar hypervolumes in a limited time. The weighted
MADS shows strong initial performance in the ResNet model, while the com-
bined method catches up as time progresses. Although the weighted BO shows
a signi�cant improvement in hypervolume, it does not reach as high a hypervol-
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Fig. 1: Evaluating the performance of di�erent algorithms on ResNet, XGBoost,
and KNN models.
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Fig. 2: Evaluating the performance of various algorithms in solving wind multi-
class classi�cation using MOO solvers.

ume as the other two methods. While weighted MADS o�ers initial advantages,
the combined method can be inferred to be e�ective overall.

Stuttgart wind multi-class classi�cation: The combined method achieves
high hypervolume quickly in di�erent models. The weighted MADS shows good
performance in comparison to the combined method, particularly in the ResNet
and KNN models. This indicates that weighted MADS could be an alternative
if su�cient computational time is available. The weighted BO shows a notable
increase in hypervolume, especially with the KNN model. Yet, it is still lower
than the hypervolume of the combined method.

Multiobjective Solvers vs. Combined Method: We also evaluate the
performance of our combined method with state-of-the-art multiobjective solvers,
USeMO and DMulti-MADS. In this case, we used the �hypervolume� as our opti-
mization objective instead of f̂ to check for descent and switching. Additionally,
we imposed at least a �ve-percent improvement in hypervolume as our descent
condition. As seen in Figure 2, the combined method consistently and rapidly
achieves better performance than USeMO and DMulti-MADS across various
models and datasets. DMulti-MADS occasionally matches the performance of
the combined method, particularly with the ResNet model in Berlin. USeMO
generally improves slightly over time, which indicates that it might be less suit-
able for complex models. There is potential for enhancing the performance of the
combined method further by appropriately investigating this descent criterion.
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5 Conclusion

This paper introduces a combined method for multiobjective hyperparameter op-
timization that uses both Bayesian Optimization (BO) and Direct-Search (DS).
Additionally, we propose a warm-start to signi�cantly reduce the model training
time. Our focus is on regression and multi-class classi�cation problems for multi-
ple machine learning models. We assess BO, DS, and our combined method using
four real-world datasets. The results demonstrate that our method outperforms
the other two approaches, particularly in scenarios with limited computational
resources. Future research will explore extending this framework to more general
derivative-free optimization problems.
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Abstract. Bayesian Optimization (BO) frameworks typically assume the function
to be optimized is stationary (homogeneous) over the domain. However, in many
real-world applications, we often deal with functions that present a rate of variation
across the input space. In this paper, we optimize functions where a finite set of
homogeneous functions defined over partitions of the input space can represent the
heterogeneity. The disconnected partitions that can be characterized by the same
function are said to be in the same class, and evaluating the function at input re-
turns the minimum distance to a boundary of the contiguous class (partition). The
ClassGP modeling framework, previously developed to model for such heteroge-
nous functions along with a novel ClassUCB acquisition function and partition
sampling strategy, is used to introduce a novel tree-based optimization framework
dubbed as ClassBO (Class Bayesian Optimization). We demonstrate the superior
performance of ClassBO against other methods via empirical evaluations.

Keywords: Bayesian Optimization · Gaussian process · Black-box Optimization
· Heterogeneous function · Non-stationary function

1 Introduction

Bayesian optimization (BO) has emerged as a powerful sequential optimization approach
for non-convex expensive to evaluate black-box functions [1,3]. The standard BO typi-
cally assumes the function to be optimized is stationary (homogeneous) over the domain,
which allows using a single covariance kernel function with constant hyperparameters
over the entire domain to model the function accurately. However, in many emerging
applications such as machine learning, neural networks, and cyber-physical systems,
the function to be optimized is heterogeneous, and the standard BO framework cannot
accurately model these functions, leading to inadequate optimization performance. Of-
ten, heterogeneous functions can be characterized by locally stationary and globally
non-stationary functions, calling for more sophisticated optimization techniques that
utilize the underlying structure to model and optimize these functions.

Many approaches have been proposed to extend BO for heterogeneous function
optimization. Bayesian treed Gaussian Process (GP) in [5] and TuRBO in [2] use a
collection of locally stationary GP’s to model and optimize heterogeneous functions.
Various methods that use non-stationary kernels have been proposed [8,4]. Methods
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in [9,7] warp the input space to a new space where the function is stationary and the
standard BO framework can be applied. Compared to these methods, our approach
utilizes the underlying structure, which allows the sharing of information across non-
contiguous partitions if they share the same function, i.e., they are in the same class [6].
Specifically, we adopt the modeling architecture presented in [6] to develop a novel
tree-based optimization algorithm.

Our contributions include: (i) A novel ClassBO framework to optimize heterogeneous
functions; (ii) A set of novel ClassBO acquisition functions; (iii) Empirical analysis of
ClassBO with different acquisition functions and compare it against other optimization
techniques.

2 Notations and Problem Setup

We want to find the optimum of a heterogeneous function f : X ⊆ Rd → R where the
heterogeneity can be represented by a finite set of homogeneous functions gj’s defined
over the axis-aligned partitions of the input space. Further, multiple partitions associated
with the same function belong to the same class. For many engineering systems, the
structure of the non-stationarity is known or can be evaluated. Hence, the observation
model is such that evaluating the function at any point x reveals function evaluation
(y), the class label (z), and the minimum distance to a boundary of partition (w). The
optimization problem is formally given as follows:

argmax
x∈X

f(x) = argmax
x∈X

 p∑
j=1

1{x ∈ Xj}gj(x)

 (1)

3 The ClassBO Algorithm

The ClassBO algorithm has three key components - (i) Bayesian statistical model: the
statistical modeling framework, ClassGP, introduced in [6] is used to model heteroge-
neous functions by formulating a distribution over the space of objectives and computing
the posterior conditioned on the observed samples; (ii) Acquisition functions: A set of
novel ClassBO acquisition functions described in Section3 are used to navigate the input
space efficiently; (iii) Partition sampling strategy: A novel sampling strategy to learn
the partitions of the input space accurately.

ClassUCB Acquisition Functions: BO algorithms use the acquisition function to
decide where to sample in the next iteration, as the acquisition function can quantify the
potential of finding an objective maximum at any given point in the input space. In this
work, we formulate a set of novel acquisition functions for the ClassBO algorithm that
uses mean and uncertainty estimates of the posterior distribution of the functions in each
partition. One of the ClassUCB acquisition functions is given as follows:

(CBO - UCB) xt = argmax
x∈Xj ,j∈[p]

(
µj,tj (x) + β

1/2
tj σj,tj (x)

)
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Here, for the jth partition learned using tailored CART algorithm of ClassGP, µj,tj , σj,tj

represent the posterior mean and variance respectively of the function being modeled in
the given partition after tj iterations, βtj is a parameter that controls the trade-off between
exploration and exploitation, and t is the current iteration of the algorithm. The ClassUCB
acquisition function forms a set of points that maximize the UCB in each partition j ∈ [p]
and selects the point with maximum UCB from the set as the next sampling point.

Partition Sampling Strategy: ClassBO performs poorly when the partitions of the
input space learned by the tailored CART algorithm are inaccurate or not complete. To
resolve this, we run a proposed novel partition sampling strategy before using ClassUCB
acquisition functions for sampling. The partition sampling strategy is a bottom-up
approach applied to each partition learned by the tailored CART algorithm applied
to initial samples. This approach constructs an axis-aligned hyper-rectangle for every
sampled point of the length twice the minimum distance from the boundary (w) with the
sampled point at the center and uniformly samples from the region not covered by the
hyper-rectangles. This approach guarantees all the partitions of input space are learned
accurately. The pseudo-code for the algorithm is given as follows:

Step 1: For each sampled point construct an axis-aligned hyper-rectangle of length twice
the minimum distance from the boundary with the sampled point at the center.

Step 2: Merge hyper-rectangles that overlap or are sufficiently close within a given partition
to form a larger hyper-rectangle.

Step 3: Uniformly sample from the regions that is not covered by the hyper-rectangles.
Step 4: Stop - If the final merged hyper-rectangle covers the entire partition else repeat.

(a) p = 4 (b) p = 16.

Fig. 1. Maximum observed reward vs iterations to compare of performance of ClassBO with
ClassUCB acquisition functions and other baselines for fixed parameters.{number of classes
(k = 2), initial samples (n = 5), iterations (T = 100)}
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4 Simulation Results

Simulations were performed over the function constructed using standard optimiza-
tion test functions. We plot the maximum observed reward (averaged over multiple
runs) vs iterations to compare the performance. Following parameters are initialized
for each simulation: dimension (d = 2), initial samples (n = 5), number of partitions
(p = 4, 16), number of classes (k = 2), number of iterations (T = 100), and for a
fixed set of initialized parameters 5 independent simulation runs for each framework are
performed for comparison. The results in Fig.1(a) shows that ClassBO outperforms BO
and TuRBO algorithms. However, as the number of partitions increase, the partitions
sampling strategy ends up sampling regions of lower interest to learn the partitions
accurately, in turn leading to slower convergence to the optima as observed in Fig.1(b).

5 Conclusions and Future Work

In this paper, we propose a new tree-based ClassBO framework that uses ClassGP mod-
eling technique for heterogeneous functions with access to class information. We also
introduce a set of novel ClassUCB acquisition functions and compare the performance
of ClassBO against other baselines. Additionally, we establish that the performance of
ClassBO is heavily dependent on the accuracy of learning the partition that contains the
maximum of the objective function. For future work, improving the sampling strategy
by incorporating uncertainties pertaining to learned partitions instead of deterministic
partition sampling strategy, scaling to higher dimensions, and theoretical analysis of the
algorithm are promising avenues to explore.
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Abstract. Making evolutionary algorithms greener implies tackling im-
plementation issues from di�erent angles. Practitioners need to focus on
those that can be more easily leveraged, such as the choice of the lan-
guage that is going to be used; high-level (interpreted), mid-level (based
on multi-platform virtual machines), and low-level (native) languages
will need power in di�erent ways, and choosing one or the other will
have an impact on energy consumption. We will be looking at the im-
plementation of key evolutionary algorithm functions, in three languages
at three di�erent levels: the high-level JavaScript, the mid-level Kotlin,
which runs on the Java Virtual Machine, and the low-level Zig. Looking
beyond the obvious, as the lower the level, the less energy consumption
should be expected, we will try to have a more holistic view of the imple-
mentation of the algorithms in order to extract best practices regarding
its green implementation.

Keywords: Green computing, metaheuristics, JavaScript, energy-aware
computing, evolutionary algorithms, zig, Kotlin

1 Introduction

The interest in greener computing has grown in the last decades. In part this has
been fueled by the Millennium Development Goals3 that advocate for a lower
carbon footprint in human activity, but also due to the fact that performance
improvements brought by faster hardware are not coming with the same speed
as they used to [19].

There are, however, no universal solutions, so we need to focus on speci�c
�eld; the general �eld of arti�cial intelligence has received a lot of attention
lately; we are, however, interested in evolutionary algorithms [3], which, broadly
speaking, fall within that �eld, but, unlike it, is not targeted by speci�c hardware
processors relying on general CPU power (and its consumption). In the general
sense, there are many di�erent ways to lower the carbon footprint of computing

3 Described in https://www.un.org/millenniumgoals/bkgd.shtml, for instance
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workloads, however: as Hidalgo et al. a�rm [7], there are four di�erent levels
for the evaluation and eventual improvement of energy consumption in AI (in-
cluding, as in this paper, metaheuristics): just above the hardware level there is
the programming language level, which includes not only the language itself, but
also libraries and compilers or interpreters (inclusively named the toolchain. The
latter was the topic of [15], where our focus was to work on di�erent JavaScript
interpreters in order to discover which one used system energy more e�ciently.

However, there are many user cases in which the language used by all or
part of the metaheuristic implementation can also be chosen. A simple choice
of language will greatly impact energy consumption, as shown in [17] or [12].
In [16], we looked at the performance of di�erent languages when implementing
an evolutionary algorithm; in this paper, we will focus on the language level,
before delving into speci�c language characteristics. Languages can be classi�ed
along many di�erent axes: compiled vs. interpreted (or compiled natively vs.
complied to bytecode, as is the case with Java and Kotlin), low vs. high-level,
functional vs. procedural vs. object-oriented, for instance. In most cases, it is
not a dichotomy, but a continuum; most interpreted languages, for instance, use
Just-In-Time (JIT) compilers before actually running a script; most languages
are also, nowadays, multi-paradigm, using procedural and functional as well as
object-oriented features. Interpreted vs. compiled, low-level vs. high-level are
still useful distinctions, however, from the point of view of performance as well
as what interests us most in this line of research, energy consumption.

Thus, for this paper, we will work with languages that occupy di�erent posi-
tions along those two axes. We will work with a high-level language, JavaScript,
using the fastest implementation available, bun; this is also an interpreted lan-
guage, a mid-level (that is, high-level from the point of view of language design,
low-level in the sense that it is compiled to bytecode), compiled language, Kotlin,
that compiles to bytecode of the Java virtual machine (JVM) and a low-level
language, Zig, a relatively new language that is still not reached production, but
is however used for bun itself4. All these languages have toolchains that are free
software and thus can be used without any kind of limitation.

These languages can also be divided along two di�erent axes that impact on
their energy consumption:

� Memory management: it is done automatically in high-level languages, like
JavaScript and Kotlin5, while it involves a series of choices in the case of
Zig. Inasmuch as allocating and releasing memory consumes energy, there
is going to be a di�erence between having a runtime or interpreter make
heuristic choices, or the developers making those decisions themselves.

� Compilation: JavaScript is interpreted, Kotlin is compiled to bytecode and
then interpreted by the JVM, and Zig is compiled to native code, but this
also implies what happens with optimization: high-level languages take all

4 Please note that there are no languages that are considered low-level and interpreted,
although there are minimalist interpreted languages like Lua [9]

5 Which, for the purposes of this paper, is considered mid-level, since it compiles to
bytecode
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decisions, while Zig will allow you to choose between di�erent optimization
levels; it also means that a di�erent kind of overhead will be incurred when
running a program: JavaScript will load the interpreter in memory, and then
parse and run the program; Kotlin will actually use the Java virtual machine
to run, and it will be loaded and then the bytecode parsed and run; �nally,
Zig creates executables, which will have some overhead due to standard
linked libraries.

In general, this implies that although a priori we can assume that a low-
level language, being closer to the iron, will consume fewer resources, the fact
that high- or mid-level languages apply heuristics and best practices to those
decisions might eventually mean that, on the default case, the balance might be
tipped towards high-level languages; this is going to be the main focus of this
paper.

Making comparisons of energy spent by di�erent implementations needs, �rst,
a methodology to make choices that are comparable across all three platforms;
then what exactly is going to be measured needs to be established, and how
to make those measurements so that they make di�erences stand out. As in
previous papers, we will focus on two critical evolutionary algorithm functions
[1]: the �tness function, as well as genetic operators. However, we will use a
heavier �tness function in this case: Hierarchical If and only IF (HIFF) [21]
for independent measurement, as well as combine mutation and crossover when
solving the OneMax optimization problem. In general, we are going for combined,
or more complex, operations in this paper so that we can implicitly evaluate
more features for every language, such as function calling or argument passing,
which will have a di�erent implementation, and thus energy overhead, in every
language.

The rest of the paper is organized as follows: next, we present the state of the
art in software engineering and its analysis of energy consumption of di�erent
software platforms, to be followed by the methodology we are going to apply in
this paper, mainly concerned with evolutionary algorithms in 3. Then we will
present the results of the experiments in 4, and �nally, we will discuss the results
and draw some conclusions in 5.

2 State of the art

The "shade of green" of di�erent languages has been repeatedly examined in
the literature, at least since it actually became a concern in software engineer-
ing [18], very recently, indeed. This concern has been systematized in what are
called the GREENER principles [11], which try to provide a foundation for En-
vironmentally Sustainable Computer Science (ESCS), and are placed at di�erent
functional and pragmatic levels, from governance to education (that would be
the last E). In this paper, we are mainly concerned with two other Es, estimation
and "Energy and embodied impact," as well as the second R, Research. These
principles seek to monitor and then minimize the energy needs of computations;
the Research principle, in turn, encourages investigating those topics. We will
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call these principles EER, for short. The GREENER principles try to kick-start
a feedback loop that allows researchers, and then developers in turn, to keep
making decisions so that the same wallclock performance can be obtained with
a lesser amount of energy.

The enunciation of these principles is very recent; however, they have been
applied to di�erent areas, in di�erent forms in the case of evolutionary algo-
rithms, these have been studied for some time [20] following the EER principles'
point of view; however, it is interesting to note what these studies have focused
in: population size [4], hardware platform [20], the kind of algorithm [6] or the
speci�c interpreter chosen to run the algorithm written in a speci�c language,
JavaScript [15]. Although in this last case, in speci�c situations, energy savings
of 90% can be achieved, there are other possible choices that, in principle, might
have a more signi�cant impact without sacri�cing performance (as would be the
case when working with di�erent hardware platforms).

One of the ways of applying these EER principles is researching the pro-
gramming language where we are going to implement the workload itself. A
comprehensive and recent study [17], that measures energy consumption on a
general workload (the so-called CLBG corpus) shows that low-level languages
like C, Rust or C++ are consistently coming on top. Mid-level languages like
Java are placed 5th on the overall energy ranking, with almost double energy
consumption. Interpreted languages like JavaScript (probably using the main-
stream interpreter, node.js) are placed 17th, spending energy at four times the
rate of C. The last language in the ranking, Perl, spends two orders of magnitude
more than the baseline; Python is next to last, with a less signi�cant di�erence.
Choosing the right platform is not everything, however, [12] shows that the same
algorithm implemented using di�erent data structures might yield di�erent lev-
els of consumption; a similar problem is approached in [2], that shows that using
the visitor pattern has a big impact in the energy pro�le of any program; how-
ever, the achieved reductions are very di�erent depending on the language: while
there is a slight reduction in the case of Java, the reduction achieved is dramatic
in the case of C++. This probably shows that when we are comparing platforms
we need to include the evaluation of higher-level components, that is, we need
to go beyond the analysis of single functions.

In this paper, however, we will focus on the choice of programming languages
based on how much energy they consume when applying the main operators
of evolutionary algorithms. We also consider the role of higher-level language
elements in its energy consumption. How we will be doing this work is presented
next.

3 Methodology

An energy pro�ling methodology will start with selecting a tool to perform
measurements, then present the workload that is going to be used, proceed to
the di�erent systems that are going to be measured, and end with the speci�c
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versions of the instruments and systems to be used; after this, the circumstances
under which the measurement is going to take place need to be presented.

The measuring instrument was already chosen in a previous paper [15]. In
general, there are system-wide as well as per-process measuring tools. We settled
for pinpoint [10], a command line tool under active development that takes per-
process measures that are more accurate than other system-wide tools; it is also
able to work with di�erent sensor APIs across di�erent operating systems, giving
us an uniform tool to measure energy consumption.

In that paper, we selected a single integer arithmetic �tness function, MAX-
ONES, and the crossover operation. However, in this paper we are taking a wider
view of the problem so we will try to work with fundamental building blocks,
but with ones that involve a bigger range of runtime system of the language. We
will thus use two functions:

� The Hierarchical If and only IF (HIFF) [21] is an integer arithmetic function
that works recursively, reducing a Boolean string of 0 and 1s by splitting it
and applying the function to the halves; the �nal result will depend on the
organization of 0s and 1s in the initial string, but will anyway involve many
recursive function calls that will have to make use of the heap.

� The other function will apply crossover to randomly selected pairs of binary
strings, followed by mutation to every member of the resulting pair, and
evaluate the ONEMAX function on that result. These are essentially �ve
function calls, not as complicated as before, but it is a fundamental opera-
tion in evolutionary algorithms and will essentially test the ability to access
random elements in a string, as well as the creation of new ones (or the
cloning of them, depending on the implementation)

We will use a workload of the same size as in the previous paper, 40K chro-
mosomes, with chromosomes of di�erent sizes: 512, 1024, and 2048 bits. This
is a di�erence with respect to the previous paper, where we did not use 512
bits, using 4096 instead. We consider that the bigger size is not as realistic, and
is relatively unlikely to be found in real problems; besides, the amount of time
needed to compute HIFF was extremely high for the high-level JavaScript, so we
decided to drop it so that experiments can take place in a relatively reasonable
amount of time.

The languages have been chosen using a speci�c criterion:

� JavaScript is, as shown in the state of the art, one of the languages that
consume the least energy as proved in [17]; in our previous paper, we have
also found that using the bun interpreter can results in savings as high as
90% [15]. It is a high-level, object-oriented language that is, indeed, quite
popular; popularity is the main criterion we have used to choose languages
used. It has been preferred over other languages that might have a higher
popularity in metaheuristics, such as Python, since the above-mentioned
paper includes it as one of the languages that consume the most energy in
a general payload; metaheuristics need not be an exception. At any rate,
this paper is about choosing among kinds of languages, so any result that is
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obtained might be extended to languages of the same kind; at the same kind,
we propose a methodology for choosing the right system for metaheuristics,
so more precise measurements would have to be performed on whatever
alternative to JavaScript we want to introduce. The implementation of the
above-mentioned function is open source and hosted at https://github.com/
JJ/energy-ga-icsoft2023 with a free license. The actual code is the same used
in the above mentioned paper.

� Kotlin is a language that compiles to the JVM, and in that sense, it would
be comparable to Java in terms of energy consumption. However, data struc-
tures and other runtime characteristics might di�er, as well as the workload
used to compare it with other languages, so what we obtain in terms of rank-
ing might be di�erent from what [17] shows. As we mentioned above, and on
a �rst approximation, results obtained here might be extended to other lan-
guages such as Java, Scala, or Clojure that also target the JVM. Kotlin has
not been the target of any popular EA library as far as we can tell, although
it is mentioned in this context in works such as [8]. The implementation that
has been used is also included in the same repository and has been adapted
from the one used in [13,14]. In that study, Kotlin was one of the fastest,
even faster than Java in one of the versions. Being the main language used
to create Android apps, its popularity makes it meet the main criterion used
to choose languages in this paper.

� Finally, we use Zig as the low-level language instead of the more popular
in EA circles C++, or, in general terms, Rust. We chose it mainly because
the interpreter we use for JS is written using it; so we should expect less
energy consumption when we lower the level of abstraction. On the other
hand, it would be a totally new implementation of evolutionary algorithms,
so this work could serve to introduce the language (and its possibilities) to
practitioners. Again, the implementation is hosted in the same repository as
the others used for this paper. This language cannot exactly be said to be
as popular as the other two in this study; however, since it is the language
used to implement the JavaScript interpreter bun, it was precisely the lowest
level of the chosen high-level language, so we were interested to see how that
would translate to di�erences in energy consumption. Another criterion used
to choose this speci�c one is that, being an emergent language, there are no
studies that we know of that work out its energy consumption.

All experiments for this paper have been carried out in a Linux machine
5.15.0-94-generic #104 20.04.1-Ubuntu SMP using AMD Ryzen 9 3950X
16-Core Processor. These are the versions used for every tool and language:

� pinpoint does not have a version, but it has been compiled from commit
1578db07b1ee30318966d7a2097ee1bb219a9dc8, October 26 2023.

� bun uses version 1.0.7.6

6 Please note that at the time of writing this, many other versions have been published;
we have used this one to be able to compare with previous papers. These same papers
show that its performance and energy consumption have important improvements,
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� zig uses version 0.11.0. This version, released by August 3, 2023, is the last
one at the time of writing this paper.

� Kotlin version string is 1.9.22-release-704; this includes the JVM version,
OpenJDK 11.0.21.

All programs are run through a Perl script that captures and processes out-
put, generating CSV data �les that are committed to this repository, and avail-
able under a free license. Instructions to compile and run it are also included
in the repository; in general, all that is needed to reproduce the results of this
paper. All the code is automatically tested and tagged so that the exact version
used in this paper can be retrieved.

Implementing an algorithm will always imply some choices in the speci�cs
used to program it. In general, we opted for the default implementation (as
suggested by tutorials), but explicitly, these are the decisions we took:

� bun uses the same implementation as previously used, namely, mutable
strings, to represent the chromosome.

� zig, being a low-level language, needs a bigger set of choices. We have used
DefaultPrng as random number generator, page_allocator as allocator,
and arrays of byte-size integers (u8) for the chromosomes. This is the de-
fault implementation of integers in the language. The executable has been
generated with default options too (optimize for optimization).

� Kotlin uses again the same implementation as [13], a BooleanArray for every
chromosome.

All results shown below are averages for 15 runs for every con�guration.
Please note that no sort of energy-wise optimizations have been performed

on these implementations, since the main users of this work would be students
and scientists with no deep knowledge of speci�c programming languages who
want to create energy-e�cient implementations of their algorithms. Every one of
the languages has di�erent levers that could be used to optimize energy, but that
is not the focus of this paper. At any rate, if there is a close call in the results,
the reader should take it into account and again measure energy consumption
for speci�c workloads.

Previously, the experiment runner eliminated the baseline energy consump-
tion by subtracting the average consumption of an idle process during the av-
erage time the experiments took; however, that implied that the energy (and
time) measured included generation of the chromosomes, as well as the opera-
tions themselves.

In this paper, we will factor out that time, as well as the energy spent. Since
the operation of generating chromosomes is made just once at the beginning of
the run in evolutionary algorithms and is thus not very signi�cant for evolu-
tionary algorithm as a whole7, subtracting it from the experiment run time will

so in case of close calls, we would recommend retaking measurements at the time of
running your experiments

7 We are not saying here that it is not an energy-consuming operation, even more so
here where we are generating all chromosomes we are using in a single loop; however,
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allow us to focus on the added energy consumption of the operations themselves;
the results published in the next section will then subtract the average time and
energy consumption of this operation, which is shown in Figure 1.
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Fig. 1. Average running time and PKG (CPUs and memory) energy consumption gen-
erating 40K chromosomes for the three languages (represented with di�erent colors);
dot size is proportional to the logarithm of the chromosome size.

This Figure 1 shows average energy consumed (PKG, by CPU and memory
mean.pkg, GPU use is negligible for this problem) vs. time taken (mean.seconds),
already allows us at least an initial comparison of the orders of magnitude of
the di�erence we should expect. Clearly, Kotlin is the fastest and also the one
that consumes the least energy; it is followed by zig, although time as well as
energy consumption grow very fast with the size of the chromosomes (here rep-
resented logarithmically as the dot size). bun is the slowest, as well as the one
that consumes the most energy, although we should note that for the bigger size
(2048 bits) zig takes almost the same amount of time, although with a lower
consumption of energy8.

while the initial population is generated only once in an EA, every other operation
used here is going to be repeated every generation; thus, in terms of either time
of energy consumption, the proportion employed by chromosome generation will be
one vs. number of generations needed to �nd the solution

8 zig will greatly vary the amount of energy needed depending on relatively irrelevant
choices such as using constant or mutable pointers; in a previous experiment run,
included in the repository, that used mutable pointers, energy consumption was
almost 10% higher.
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We will proceed to the experiments on an evolutionary algorithm workload,
which will use this as a baseline.

4 Results

The �rst experiment will perform 40K crossover + mutation + onemax opera-
tions on chromosomes of size 512, 1024 and 2048.
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Fig. 2. Running time and PKG energy consumption processing 40K chromosomes via
crossover, mutation and ONEMAX for the three languages (represented with di�erent
colors); dot shape represents the chromosome size.

Figure 2, shows the di�erence in running time and PKG energy consumption
for the three languages examined. We have opted to show the results for every
experiment in a single plot, to reveal trends as well as some quirks that might
be explained more by language idiosyncrasies than by experimental errors. For
instance, we can see that there are several cases where the Kotlin experimenta-
tion takes a long time, even for 1024 bits and 512 bits. One of the issues that
the JVM has is garbage recollection; if there is a garbage recollection cycle it
can clearly impact performance. The fact that it has hit a percentage of the
experiments reveals that speci�c behaviors need to be taken into account and,
to the extent that it is possible, mitigated.

Another quirk is the lower-than-0 energy consumption for zig, simply reveal-
ing that the di�erence in energy consumption is so low that it falls below the
average for the generation of the chromosomes. zig's energy consumption is never
higher than 60 Joules, anyway.
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The trends need to be pondered, too. In general, bun is going to take longer
and consume more energy than the rest for every size; Kotlin is the fastest
and boasts the lower consumption of energy overall for smaller sizes. zig, on
the other hand, is faster than bun, and its speed is quite consistent; not so for
consumption of energy, which can go from very low, to even less than Kotlin
in some experiments (and virtually zero), to relatively high, with a maximum
closer to the average for bun.

Table 1. Average operations per Joule in the combined operations experiment for the
three languages.

Language Size PKG average PKG SD Ops/Joule average
bun 512 22.26 7.58 1796.68
bun 1024 52.72 17.12 758.79
bun 2048 66.51 20.57 601.40
zig 512 20.01 8.34 1998.67
zig 1024 21.35 15.52 1873.42
zig 2048 30.82 22.36 1298.06
kotlin 512 12.00 12.02 3334.26
kotlin 1024 29.67 26.88 1348.22
kotlin 2048 23.71 5.10 1686.72

What we see in Table 1 is a complicated scenario, where Kotlin has a very high
number of operations per Joule, with a power consumption as low as 12 Joules
for the smallest size, although the trend is slightly di�erent for the middle size of
1024 bits, where zig obtains the lowest energy consumption and operations per
Joule, mainly due to the fact that the standard deviation for Kotlin, probably
due to garbage recollection operations, is very high. Remarkably, the energy
consumption for Kotlin can be as low as 1/3 of what bun requires; zig requires
half (although they can be very close for the smallest value, where Kotlin excels).

We need to check the speed and consumption of the selected �tness function,
HIFF, for the three languages, so we can have a more complete picture of the
energy pro�le for the three languages. This is a heavy-weight function, involving
function calls in the order of one thousand. Even if it is going to take much more
time than generating the chromosomes, we will still subtract the time needed
for that operation to compare di�erent things uniformly.

The operation for these functions needed some tweaking, namely, conversion
to string in the case of Kotlin and to constant string in the case of zig. This adds
what is essentially a copying operation to the �tness itself, but we decided to do
that in order to have HIFF de�ned in the most similar way possible (working
with strings of 0s and 1s).

The results for time and energy consumption are represented in Figure 3. We
can already observe that the consumption is more than one order of magnitude
higher than before, and since the number of function calls is dependent on the
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Fig. 3. Running time and PKG energy consumption computing the HIFF �tness func-
tion for 40K chromosomes for the three languages (represented with di�erent colors);
dot shape represents the chromosome size.

chromosome size, it grows more or less linearly with size. We can also observe
that, as usual, bun is the slowest and the one that consumes the most energy.

However, the situation with zig and Kotlin is di�erent. Kotlin is in most cases
slightly slower, but also more energy-saving, thus more green than zig. We rep-
resent a boxplot comparing them in Figure 4.

Di�erences are signi�cant for all three languages, for all sizes involved; in the
case of the biggest size, there is indeed a considerable di�erence, with Kotlin
spending less than 1500 Joules on average.

Table 2. Average operations per Joule in the HIFF experiment for the three languages.

Language Size PKG average PKG SD Ops/Joule average
bun 512 425.91 41.91 93.92
bun 1024 987.69 64.54 40.50
bun 2048 2204.06 123.40 18.15
zig 512 349.66 15.60 114.40
zig 1024 747.59 37.19 53.51
zig 2048 1651.50 35.18 24.22
kotlin 512 305.29 20.93 131.02
kotlin 1024 648.83 22.88 61.65
kotlin 2048 1386.58 38.43 28.85
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Fig. 4. Boxplot of the energy consumption of the HIFF �tness function for 40K chro-
mosomes for Kotlin and zig

What we see in Table 2 is the number of operations per Joule all three
languages are able to perform.

5 Discussion, conclusion and future work

In this paper, we have performed a series of experiments running an evolutionary
algorithm workload using three di�erent languages with di�erent levels (di�erent
ways of running the �possibly compiled� code), which translate to di�erent ways
of running the algorithms. Focusing on a set of operations allows us to create spe-
ci�c energy pro�les for the algorithm implementations, as well as the languages.
The methodology followed enables to benchmark the energy consumption of the
di�erent languages, as well as to di�erentiate them; it does not consume an ex-
cessive amount of time. Showing the results as operations per Joule focuses the
the attention on how "green" every language is, by showing precisely how many
operations can be performed with a certain amount of energy.

In this work, we compared the performance regarding power consumption of
three languages, JavaScript (using the bun high-performance interpreter), Kotlin
(using a free JVM), and zig, when implementing certain important operations in
evolutionary algorithms. We have used two workloads, one with a combination of
genetic operators and the OneMax �tness function (which would be a lightweight,
although widely used, combination), and another with the HIFF �tness function,
which is not only heavier in terms of operations, but also recursive, thus involving
speci�c language overheads.
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In all cases (that include also the generation of the chromosomes measured,
used as baseline) we have found that the combination of Kotlin and the JVM is
the most energy-e�cient language (as well as the faster, although that was not
the main focus of the experiment), followed by zig, and �nally JavaScript using
bun as interpreter. The di�erence is bigger for core-only operations, where Kotlin
can be twice as fast as bun, than in other operations that involve the overhead
of function calls, like HIFF, where the di�erence is much smaller, around 5% for
zig and Kotlin in the chromosomes with the biggest size. The fact that zig can
be slightly faster than Kotlin in this last case is not relevant from the point of
view of the energy e�ciency; Kotlin still needs less energy even if it takes a bit
longer; you can trade o� easily energy e�ciency for speed in this case, since the
average di�erence is just a few percentage points.

The relatively small di�erence between Kotlin and zig might imply that with
some engineering and optimizations, zig energy e�ciency might be on a par with
Kotlin. Low-level languages have many di�erent ways of optimizing its design
and tooling, and we did not create the zig program at an expert level. However,
this level is consistent with the use case we are giving the application, those
of a scientist acting as a developer, not an expert developer of system software
(which is the most common use case for zig). We cannot then a�rm that Kotlin
is the most e�cient across the board, but we can de�nitely propose it as the
greener technology for the speci�c case of evolutionary algorithms that do not
have an extensive amount of GPU use; this would include mainly tests for new
operators or, in general, new methodologies for evolutionary algorithms that use
common �tness functions.

The interesting thing about modern experimental setup is that di�erent lan-
guages can be easily mixed in a single application. As we can see in the exper-
iments above, energy expenses of �tness functions can be twice as high as the
rest of the operations; using green languages exclusively in this case, leaving the
rest of the application to easier-to-use interpreted languages will not have a big
impact in the energy pro�le, while simplifying the development as well as the
integration within current frameworks such as DEAP [5].

As future lines of work, we plan to extend this study to other languages
and workloads, especially those that use di�erent kind of virtual machines like
Haskell or Elixir. On the algorithmic side, another research venue is to analyze
the energy consumption of languages implementing di�erent concurrency mod-
els, implemented either by language constructs or through specialized virtual
machines. We also plan to analyze the energy consumption of di�erent hard-
ware platforms (including virtualized cloud platforms), and to develop a tool to
help researchers and developers to choose the most energy-e�cient language for
their needs. Di�erent �tness functions will also present a di�erent energy pro-
�le, so including them in the investigation might help us have a more complete
dashboard to be able to minimize resource consumption of EA implementations.
Fitness function that employ �oating-point arithmetic would need to use the
GPU, with a totally di�erent energy pro�le, so that will need to be taken into
account.
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An investigation focused on zig would also help understand how low-level
languages can be made greener and to what extent energy e�ciency can be
improved.
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Abstract. Managing energy resources in scienti�c computing implies
awareness of a wide range of software engineering techniques that, when
applied, are able to minimize the energy footprint of experiments. In
the case of evolutionary computation, we are talking about a speci�c
workload that includes the generation of chromosomes and operations
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a �tness value. In a low-level language such as Zig, we will show how
di�erent choices will a�ect the energy consumption of an experiment.
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One of the concerns in modern evolutionary computing is reducing the amount
of energy spent in experiments, trying to make nature-inspired computing more
nature-friendly [6]. This involves developing a methodology to measure energy
spent, as well as identifying the EC operations that consume the most energy. In
[4] we settled on a language and OS-independent set of tools, but also followed
[1] in choosing the set of operations under measure: mutation, crossover and a
simple �tness evaluation, ONEMAX.

In [4] the main factor under study was the di�erent interpreters used in a
high-level language, JavaScript. In the case of low-level languages like zig, a lan-
guage that emphasizes safety and maintainability [2], there is a single compiler,
but there are several choices to be made, even if the defaults should provide
enough performance and energy e�ciency. Yet, in general, developers, and even
more so scienti�c ones, are generally unaware of the energy impact of their
algorithm implementations [5], not to mention techniques available for their re-
duction [3].

In this paper we will work on a generic evolutionary algorithm workload, and
see what the impact of di�erent choices will have on its energy consumption.
With this, we will try to �nd some best practices that will help practitioners
implement evolutionary algorithms in zig or other low-level languages.

The experiment setup will match the one used in [4], using the same tools
for energy pro�ling (pinpoint) as well as Perl scripts to run the experiments
and process the results. All experiments for this paper have been carried out in
a Linux machine 5.15.0-94-generic #104 20.04.1-Ubuntu SMP using AMD
Ryzen 9 3950X 16-Core Processor. These are the versions used for every tool
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and language, with zig version 0.11.0, released by August 3, 2023, which is the
last stable one at the time of writing this paper. The Perl scripts generate CSV
�les that are then processed and plotted using R embedded in the source code
of this paper. All code, data and source for this paper are available at https:
//github.com/JJ/energy-ga-icsoft2023 under a free license.

There are several units whose consumption can be measured using pinpoint

via the RAPL interface; since the use of GPU is negligible in these examples,
only memory and CPUs will be measured. Together, they are called the package

(alongside with caches and memory controllers); this is usually represented by
the acronym PKG.

We will be examining choices in three di�erent areas

� By default, zig adds debug information to the resulting binary, without per-
forming any kind of optimization. We will test the impact of using the Re-

leaseFast option when building binaries.
� The �rst version used strings for representing chromosomes. We will test
arrays of Boolean values instead, which is a primitive type too.

� Unlike other languages, zig provides di�erent memory allocators, which can
be chosen by the developer. By default, a page allocator is used, but there
is the possibility of using a �xed bu�er size allocator.

We will �rst generate 40000 chromosomes of size 512, 1024 and 2048, and
measure the energy consumption and running time of this operation; every com-
bination is run 15 times. Not all combinations of the three techniques above
could be tested, we show the results in Figure 1, along with the baseline that
was compiled using default settings, character strings and page allocator. The
other choices tested are: Built with ReleaseFast option (tagged "ReleaseFast"),
built in the same way and using a Fixed Bu�er Allocator ("ReleaseFastFBA"),
built with default options, using Boolean arrays as well as the Fixed Bu�er
Allocator ("Boolean")1.

This Figure 1 shows the dramatic change in energy consumption (as well as
performance) that can be obtained just by changing compiling and programming
options. Using a �xed bu�er alongside the ReleaseFast option implies a 95%
reduction in the energy consumed2. Even with the default compilation options,
applying changes in the allocator and the data structure used reduces by 50%
energy used. The impact on running time, although not the focus of this paper,
is also signi�cant.

We will now run an experiment that, after generating the 40K chromosomes,
will perform crossover + mutation + onemax operations on chromosomes of
size 512, 1024 and 2048 3. In this case, the combination of �xed bu�er allo-
cator plus ReleaseFast has been skipped, since beyond the initial generation of

1 This combination proved di�cult in practice, crashing the program for size 2048; it
did not work with the ReleaseFast option either

2 We should take into account that generating chromosomes uses allocation heavily,
so this is the kind of operation that would be the most impacted

3 As indicated above, we could not make the Boolean bitstring along with �xed bu�er
allocation work for the biggest size
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Fig. 1. Average running time and PKG energy consumption generating 40K chromo-
somes for the di�erent techniques used (represented with di�erent colors); dot shape
represents the chromosome size.

chromosomes, there is barely any allocation happening; in fact, just two tem-
porary bitstrings during the crossover operation. Comparisons for the other two
combinations plus baseline are shown in Figure 2.
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Fig. 2. Boxplot of PKG energy consumption processing 40K chromosomes via
crossover, mutation and ONEMAX for di�erent combinations of optimization tech-
niques in Zig

This case is remarkably di�erent to the one shown in Figure 1. For starters,
the energy consumption is very low, one order of magnitude lower; regular genetic
operations do not spend a lot of energy indeed, with most consumption focused
on �tness functions. Even so, the fast compilation spends half the energy of the
other combinations. Remarkably, using a di�erent data structure does not always
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imply a better energy pro�le; it does so only for the smaller size, 512 bits (which
is anyway closer to usual chromosome sizes).

In this paper we have used di�erent techniques that potentially could re-
duce the amount of energy spent by a genetic algorithm implemented using the
low-level language zig: testing di�erent data structures, allocation policies and
compilation options. The most dramatic reduction is achieved with the fast com-
pilation policy, but additional improvements can be obtained by using adequate
data structures and allocation policies. By using best practices in this area,
zig implementations can indeed be considered the greener ones among other
high-level or Java Virtual Machine based languages. it remains as future work,
however, how applying similar techniques when available will impact the energy
consumption of other languages.
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Abstract. We present CLS-Luigi, a framework for synthesizing ana-
lytics pipelines that enable prediction and decision-making. Analytics
pipelines typically consist of a number of diverse steps ranging from
simple preprocessing to informed machine learning and optimization
algorithms. Implementing pipelines and selecting algorithms is time-
consuming and the performance of selected algorithms is interdependent.
CLS-Luigi improves the implementation process by adapting and using
a well-established synthesis framework, Combinatory Logic Synthesizer
(CLS), to automatically generate pipeline variants based on a repository
of typed components that are implemented in Python. Luigi, a pipeline
framework developed by Spotify, executes pipeline variants efficiently
and allows intermediate results to be shared among similar pipelines to
optimize resource utilization. We demonstrate the simplicity, expressive
power, and run-time gains of CLS-Luigi through two examples: First,
we show that CLS-Luigi has the modeling capabilities to automatically
generate machine learning pipelines that cover all algorithms included in
AutoSklearn, and delivers high-quality results. Second, we go beyond the
capabilities of AutoML by facilitating the consistent synthesis and ex-
ecution of decision pipelines covering different optimization paradigms.
Our framework is easily accessible, open-source, and compatible with
most existing tools and Python libraries used in data analytics.

Keywords: Data-driven decision-making · Pipeline synthesis · Ma-
chine learning · AutoML

1 Introduction

The goal of data analytics is to apply algorithms to data in order to make good
decisions [4]. In predictive analytics, data is used to predict future trends, or
outcomes based on patterns identified in historical data using machine learning
(ML). Prescriptive analytics applications automate decision-making by applying
optimization methods that range from simple rules to complex mathematical
⋆ This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) - 502552827;276879186.
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approaches. Due to the complexity of real-world applications, the predictive or
decision-making process is typically broken down into discrete tasks. Each task
is handled by a component. Linked components form pipelines [11].

ML pipelines include algorithms for data cleaning, feature preprocessing and
selection, and one or several predictive models. In addition, models tailored to
specific problems by incorporating prior knowledge (also referred to as informed
ML) are becoming increasingly important [25].

Decision-making in real-world is often subject to uncertainty. The simplest
pattern for dealing with uncertainty is the predict-then-optimize paradigm [5]: In
the first step, a ML pipeline provides point estimates for uncertain parameters.
In the second step, an optimization approach solves the (nominal) optimization
problem using the estimates as input.

For most tasks in predictive and prescriptive analytics, there exist different
algorithms, often with large parameter spaces. Moreover, the performance of
one algorithm depends on the performance of an upstream algorithm. Thus,
the design space is large, and building analytics pipelines is a complex, time-
consuming task.

Automated machine learning (AutoML) frameworks, such as AutoSklearn [6],
significantly advance the automatic creation and optimization of ML pipelines
but lack extensibility, struggling to integrate informed ML models or decision-
making algorithms. Pipeline frameworks, on the other hand, accommodate a
broad range of computations with data input and output but do not automate
pipeline generation.

Our vision with CLS-Luigi is to provide a framework that automatically gen-
erates analytics pipelines based on algorithmic repositories tailored to recurring
problems in different domains. The contribution of this paper is twofold: (1)
We delineate the core concepts and components of CLS-Luigi and illustrate its
application through a small coding example. (2) We show the simplicity, the ex-
pressive power, and the run time gains of CLS-Luigi by two examples: First, we
model and automatically generate classification pipelines based on the repository
of algorithms used in AutoSklearn. Second, we model and generate pipelines for
shortest path optimization with uncertain cost, facilitating a consistent compar-
ison of two optimization paradigms.

The paper is organized as follows: We start with a brief review of the re-
lated literature in Section 2, followed by the introduction of our framework
in Section 3. Sections 4 and 5 detail the ML and the decision pipeline ex-
ample, respectively. We conclude in Section 6 by discussing strengths, limita-
tions, and future research directions. All presented examples are available at
https://github.com/cls-python/cls-luigi_paper.

2 Related Work

Data pipelines are collections of interconnected tasks or actions that transform
data in a specific order to yield specific results [9]. They can be modeled as
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directed acyclic graphs, where nodes represent transformations and arrows rep-
resent data flow (and dependencies). Pipeline frameworks such as Luigi [13],
Apache Airflow [1], and Metaflow [17] have been developed to address various
issues, e.g., dependencies and error handling, scalability, portability, and deploy-
ment [26]. Although newer frameworks are technically more versatile, Luigi is
still popular because of its ease of learning and negligible setup effort.

The field of AutoML involves generating and optimizing ML pipelines. A good
overview of the field is given in [27,10]. AutoML frameworks build pipelines that
usually include steps for data cleaning and preprocessing, feature selection, and
model training [27]. The automation of pipeline generation is abundantly present
in AutoML: AutoSklearn [6] uses Bayesian optimization to search a hierarchical
search space consisting of ML algorithms and their hyperparameters, and sets the
structure of resulting pipelines using a template [27]. AlphaD3M [12] employs
a Monte Carlo Tree Search (MCTS) with a neural network to select pipeline
steps incrementally, while relying on context-free grammar that describes the
pipeline structure and permitted algorithms. DSWIAZRD [28] also uses MCTS,
yet selects algorithms based on the meta-features of the intermediate datasets.
AutoML frameworks usually use a pre-defined set of algorithms and are not easily
adaptable to domain-specific problems. In [23], the authors show this issue and
present the AutoML framework ML-Plan-RUL, which is tailored to estimating
the remaining useful life of machine components. Moreover, the AutoML Toolkit
(AMLTK) [2] framework addresses this exact issue and offers components for
modeling, generating, and optimizing ML pipelines based on a template. Yet,
it only handles algorithms with the Scikit-Learn [18] interface, since it compiles
the resulting pipelines into Scikit-Learn pipeline objects.

Decision-making in real-world is typically complex and often subject to un-
certainty. Predict-then-optimize is a straightforward and very common pattern
in analytics practice [5]. Alternatives to managing uncertainty include stochastic
optimization, which models uncertainty as a distribution during the optimization
process, and robust optimization, which accounts for uncertainty by considering
minimum and maximum values [19]. Recent approaches integrate the optimiza-
tion step into learning. An example is SPO+ [5]. To ease the comparison between
optimization paradigms, PyEPO [22], a library that implements some of these
methods, has been developed, yet pipeline construction remains manual.

Software synthesis is a well-researched field, which by the late 1970s already
had become too vast to cover within one paper [16]. Approximately 45 years
later, it is impossible to keep up with or even summarize all published software
synthesis approaches, which is why we focus our discussion on the approach we
use as a basis for CLS-Luigi. The CLS (Combinatory Logic Synthesizer) frame-
work is a well-established tool for component-oriented synthesis based on finite
combinatory logic with intersection types [20], which is flexible enough to sup-
port multiple languages [3]. It has proven to be useful in a variety of engineering
applications, such as, for example, robotics [21], manufacturing [15], schedul-
ing [14], and planning [7]. CLS uses a type-based specification for components
and enumerates all possible well-typed solutions for a given target type. This is
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similar to functionalities of dependency injection tools allowing to automatically
inject instances of a given type into code, but CLS can enumerate all possible
candidates instead of enforcing the uniqueness of injection targets. The frame-
work has a Python implementation, making it compatible with many of the
analytics pipeline frameworks and libraries. Our work goes beyond prior uses of
CLS by focusing on general analytics pipelines instead of a fixed narrow field of
engineering problems and providing a full integration into Luigi data pipelines.

3 CLS-Luigi Framework

The CLS-Luigi framework is best introduced by a minimal practical example. We
want to run four separate ML pipelines using two scaling algorithms and two
classifiers. As shown in Figure 1(A), we first load the well-known Iris dataset
from Scikit-Learn [18], then scale the features (using RobustScaling and Min-
MaxScaling), and finally train a classifier (DecisionTree or RandomForest).

LoadIris

A

(A) Four Seperate Luigi Pipelines (B) CLS-Luigi Template

(C) CLS-Luigi Dependency Graph
Luigi task A Data flow from A to B

B depends on A
Abstract component B

Concreate component  A A specializes B

RobustScaling
LoadIris RobustScaling
LoadIris MinMaxScaling
LoadIris MinMaxScaling

LoadIris Scaler Classifier

RobustScaling

MinMaxScaling RandomForest

DecisionTree

RobustScaling
DecisionTree

MinMaxScaling
RandomForest
DecisionTree

RandomForest

LoadIris

DecisionTree

DecisionTree
RandomForest

RandomForest

B

A

A B

B

A

Fig. 1. Visualization of the minimal example.

Instead of explicitly modeling all pipelines separately in Luigi, we define
the CLS-Luigi template in Figure 1(B). The LoadIris task is defined as a con-
crete component, while the Scaler and Classifier are defined as abstract com-
ponents. RobustScaling and MinMaxScaling are concrete components that spe-
cialize the Scaler component, and hence, they are valid substitutions. Similarly,
the Classifier component is specialized using DecisionTree and RandomForest
components. This specialization mechanism is realized using class inheritance
in Python. The implementation of pipelines with CLS-Luigi is very similar to
the implementation with Luigi: Classes of task components inherit from both
luigi.Task and luigiCombinator. They implement the methods requires()
(to specify dependencies), output() (to specify a resource written when the task
is done), and run() (to actually perform the task). In what follows, we present
the code blocks for implementing and executing our minimal example:
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(1) Define LoadIris Component This component downloads the dataset in
the run() method and saves it using the path specified in output(). Since this
component has no requirements, requires() is not implemented.

1 import luigi
2 from cls_luigi.inhabitation_task import LuigiCombinator
3
4 class LoadIris(luigi.Task, LuigiCombinator):
5
6 def output(self):
7 return luigi.LocalTarget("iris.csv")
8
9 def run(self):

10 from sklearn.datasets import load_iris
11 ds = load_iris(as_frame=True).frame
12 ds.to_csv(self.output().path, index=False)

(2) Define Abstract Scaler Component We implement an abstract compo-
nent (placeholder) for scaling algorithms and make sure that the class variable
abstract is set to True. To include LoadIris as a dependency, we (1) set the
class variable iris as a ClsParameter to the type returned when construct-
ing LoadIris and (2) return an instance of it in the requires() method. As
shown under run(), this component loads the saved data from the LoadIris
(using method input() which is automatically provided by Luigi based on
requires()), and scales the features using the scaler provided by get_scaler().
The scaled features and labels are saved with the path specified in output().
The output file names are annotated with the task ID to ensure unique output
file names.

1 from cls_luigi.inhabitation_task import ClsParameter
2 import pandas as pd
3
4 class Scaler(luigi.Task, LuigiCombinator):
5 abstract = True # placeholder
6 iris = ClsParameter(tpe=LoadIris.return_type())
7
8 def requires(self):
9 return self.iris() # from line 6

10
11 def output(self):
12 return luigi.LocalTarget(f"scaled_iris_{self.task_id}.csv")
13
14 def run(self):
15 # load dataset from previous component
16 ds = pd.read_csv(self.input().path)
17 feats = ds.drop(columns="target", axis=1)
18
19 # transform features and save
20 scaler = self.get_scaler()
21 ds[feats.columns] = scaler.fit_transform(feats)
22 ds.to_csv(self.output().path, index=False)
23
24 def get_scaler(self):
25 return NotImplementedError

(3) Define Concrete Scaler Components The two concrete scaling com-
ponents are created by inheriting from Scaler and setting the class variable
abstract to False. Then we implement the get_scaler() method. Task Ro-
bustScaling is similarly implemented, and we omit its presentation for brevity.

1 class MinMaxScaling(Scaler):
2 abstract = False
3
4 def get_scaler(self):
5 from sklearn.preprocessing import MinMaxScaler
6 return MinMaxScaler()
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(4) Define Abstract & Concrete Classifier Components Now we im-
plement an abstract component for classification that requires the Scaler. Deci-
sionTree and RandomForest are the corresponding specializations. The structure
here is the same as for the implementation of the scaling components.

1 class Classifier(luigi.Task, LuigiCombinator):
2 abstract = True # placeholder
3 scaled_ds = ClsParameter(tpe=Scaler.return_type())
4
5 def requires(self):
6 return self.scaled_ds()
7
8 def output(self):
9 return luigi.LocalTarget(f"y_pred -{self.task_id}.csv")

10
11 def run(self):
12 # load data from previous component
13 ds = pd.read_csv(self.input().path)
14 X = ds.drop(columns="target", axis=1)
15 y = ds["target"]
16
17 # fit classifier
18 clf = self.get_classifier()
19 clf.fit(X, y)
20
21 # predict and save predictions
22 y_pred = pd.DataFrame(data=clf.predict(X), columns=["y_pred"])
23 y_pred.to_csv(self.output().path, index=False)
24
25 def get_classifier(self):
26 return NotImplementedError
27
28 class DecisionTree(Classifier):
29 abstract = False
30
31 def get_classifier(self):
32 from sklearn.tree import DecisionTreeClassifier
33 return DecisionTreeClassifier()

(5) Synthesize and Run Pipelines First, a repository of all task components
is built and the target is set to the type used for constructing the final component,
namely Classifier. The framework will automatically (using meta-class-based re-
flection available in Python) construct this repository and its subtype structure,
so we can use it as a basis for the finite combinatory logic of CLS. Then, we use
CLS to build a finite representation (tree-grammar) based on the target (method
inhabit), which is the way to synthesize all feasible pipelines. The number of
pipelines can be infinite. In the infinite case, we explore the smallest 10 of them
by number of task components. In the finite case we explore all pipelines. In our
particular example, four pipelines are possible which we then hand over to the
Luigi scheduler for execution. Figure 1(A) shows all of them, while (C) shows
the actual dependency graph as it gets executed. Luigi runs the LoadIris task
and the Scaler tasks only once with successors sharing their results.

1 from cls.fcl import FiniteCombinatoryLogic
2 from cls.subtypes import Subtypes
3 from cls_luigi.inhabitation_task import RepoMeta
4
5 # build component repository and set target type
6 repository = RepoMeta.repository
7 target = Classifier.return_type()
8
9 # build tree-grammar and synthesize pipelines

10 fcl = FiniteCombinatoryLogic(repository , Subtypes(RepoMeta.subtypes))
11 results = fcl.inhabit(target)
12
13 # restrict number of pipelines to 10 if infinite
14 num_pipes = results.size() # returns -1 if infinite
15 num_pipes = 10 if num_pipes == -1 else num_pipes
16 pipes = [t() for t in results.evaluated[0:num_pipes]]
17
18 # handover pipelines to luigi scheduler
19 luigi.build(pipes, local_scheduler=True)
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The repository can be easily extended by adding more scaling and classifica-
tion algorithms that conform with the Scikit-Learn’s [18] API. In Section 4, we
show an example where extensions change the pipeline structure.

4 AutoML Example

In this section, we show how to apply CLS-Luigi to systematically generate ML
pipelines based on the algorithmic repository of the AutoML framework Au-
toSklearn. AutoSklearn uses a template that sets the structure of all resulting
pipelines and uses Bayesian optimization to select algorithms and their hyper-
parameters from the template’s search space. For binary classification problems
with numerical features, AutoSklearn’s pipelines have the following steps: impu-
tation, scaling, feature preprocessing (including dimensionality reduction, feature
generation and selection), and classification. While imputation is compulsory in
AutoSklearn, even when no missing values are present, scaling and feature pre-
processing can be omitted by replacing them with dummy steps.

As depicted in Figure 2, we constructed a pipeline template in CLS-Luigi
that imitates the pipeline structure of AutoSklearn and implemented the same
algorithm choices for each step. The pipeline template starts by loading the
dataset. For simplicity, we limit our example to CSV files. Hence, we implement
the concrete component LoadCSVData. In this step, the features and targets are
also split into disjoint training and validation subsets. Next, missing values of
features are imputed using the SimpleImputer a specialized NumericalImputer.
Then, features can be scaled using one out of six specialized Scaler components,
or they are passed using NoScaler. Afterward, one out of 12 specialized Fea-
turePreprocessor components transforms the features, or the features are passed
on to the next task using the NoFeaturePreprocessor. Note that the Numeri-
calImputer and Scaler components require only the features, while FeaturePre-
processor requires both features and targets as some algorithms require also the
target values. Finally, the last component is a Classifier and it requires processed
features and target values. This template results in 1456 unique pipelines (1 x 1
x 7 x 13 x 16). It is easy to extend this pipeline template with a second special-
ized NumericalImputer (e.g. IterativeImputer from Scikit-Learn [18]). Doing so
increases the number of pipelines to 2912.

LoadSplit Data NumericalImputer Scaler FeaturePreprocessor Classifierxt,v

LoadCSVData ... 16 Choices12 Choices NoFeaturePreprocessorSimpleImputer ...6 Choices NoScaler

xt,v xt,v xt,v

yt,v yt,v

  x, y: features and targets
  t, v: training and validation 

Fig. 2. Visualization of the pipeline template that imitates AutoSklearn’s pipelines.
Refer to Figure 1 for the meaning of box colors and arrow types.
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4.1 Enhancing AutoSklearn Pipeline Modeling

The pipeline templates, both in CLS-Luigi and AutoSklearn, include redundant
steps (NoScaler, NoFeaturePreprocessing) that only “emulate” structural vari-
ance to generate pipelines with a variable number of components. However,
CLS-Luigi can express structural variance with specialization hierarchies and
without introducing redundant dummy components in solutions.

Recall that Classifier can be proceeded by a FeaturePreprocessor, Scaler,
or a SimpleImputer. A FeaturePreprocessor, if contained in a pipeline, can be
proceeded by a Scaler, a NumericalImputer, or both. As shown in Figure 3,
this dependency can be abstracted away by implementing a new abstract com-
ponent, namely the DataPreprocessor, which manages the dependency of the
Classifier. As the FeaturePreprocessor, the Scaler, and NumericalImputer spe-
cialize this DataPreprocessor all three are valid proceeding components of the
Classifier. Analogously, the NumericalPreprocessor manages the dependency of
the FeaturePreprocessor, and as such, the valid proceeding components are the
specializations Scaler and NumericalImputer. Now, all pipelines will include ei-
ther (1) a FeaturePreprocessor, (2) a NumericalImputer, or (3) a Scaler. Finally,
to guarantee that all pipelines include a specialized NumericalImputer, we set
the Scaler component to depend on the NumericalImputer. As in the previous
section, this pipeline template generates a total of 1456 unique pipelines. How-
ever, some of these pipelines have fewer steps (3 or 4 instead of 5) omitting the
dummy tasks. Therefore, this modeling variant allows for the incorporation of
structural variance into pipeline templates.

LoadSplit Data NumericalImputer Scaler FeaturePreprocessor Classifierxt,v

LoadCSVData 16 Choices12 ChoicesSimple Imputer 6 Choices

xt,v

xt,v
yt,v

DataPreprocessor

NumericalPreprocessor

xt,v

  x, y: features and targets
  t, v: training and validation 

yt,v

Fig. 3. Visualization of the enhanced pipeline template that resembles AutoSklearn’s
pipelines. Refer to Figure 1 for the meaning of box colors and arrow types.

4.2 Assessing Run Times & Prediction Quality

We evaluate the enhanced modeling approach of CLS-Luigi in terms of perfor-
mance scores and computational efficiency, comparing it to AutoSklearn.

Dataset Selection and Computational Setup We use 15 datasets from
OpenML [24] covering various domains with different numbers of instances and
columns. For the brevity of presentation of models and results, all selected
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datasets contain solely numeric features. This selection is inspired by the dataset
selection in the original AutoSklearn paper [6] and is shown in Table 1. The left-
hand side of this table shows the names of the selected datasets and their cor-
responding number of rows and features. The column “in AutoSklearn?” shows
whether a dataset is part of its meta-learning datasets.

To allocate a run time limit for AutoSklearn, we executed CLS-Luigi and
recorded the total elapsed time for all pipelines per dataset. Then, we allocated
double the elapsed time to AutoSklearn. To select the best-performing pipeline,
we apply the same procedure as AutoSklearn (holdout subset): We used the
original training and testing indices from OpenML for a first split, and split the
training dataset further into training and validation subsets in CLS-Luigi. We
selected the pipeline with the highest accuracy score on the validation dataset.

Since we do not build ensembles in our CLS-Luigi template, we disabled
AutoSklearn’s ensemble building mechanism for a fair comparison. Moreover,
in AutoSklearn, certain component combinations are forbidden. We accounted
for that by filtering the synthesized pipelines such that they are permitted in
AutoSklearn. To avoid long-running pipelines we restricted the run time of task
components in CLS-Luigi to 100 seconds, while AutoSklearn uses 10% of the to-
tal allowed time for the individual entire pipeline execution by default. Note that
all pipeline components in CLS-Luigi are executed using default hyperparam-
eters from AutoSklearn while AutoSklearn performs hyperparameter optimiza-
tion. This example was conducted using an Intel(R) Xeon(R) w5-2445 x86_64
CPU with two NVIDIA RTX 6000 Ada Generation GPUs and 128GB memory.
Since CLS-Luigi and AutoSklearn require different Python versions, we used
Python v3.11 with CLS-Luigi v0.1.1 and Python v3.8 with AutoSklearn v0.15.0
in separate virtual environments.

Accuracy Scores & Number of Evaluated Pipelines We report the ac-
curacy score of the best-performing pipeline on the test dataset, and the total
number of evaluated pipelines in Table 1. CLS-Luigi achieved higher accuracy
scores on 11 out of 15 datasets, while AutoSklearn achieved a higher accuracy
score on two datasets. For the remaining datasets, the achieved accuracy scores
for both frameworks were equal. For all aforementioned datasets, CLS-Luigi eval-
uated 1183 pipelines, while AutoSklearn evaluated significantly fewer pipelines
across the vast majority of the datasets. This includes both successful and failed
pipelines for both frameworks.

Computational Efficiency In Table 2, we show the total run time and our
estimate for time savings using the caching mechanism of Luigi per dataset. As
stated earlier, identical sub-graphs between pipelines in CLS-Luigi are cached
and executed only once. To estimate the saved time by caching, we first computed
the geometric mean of run seconds for each concrete task across all successful
pipelines per dataset, then multiplied it by the number of occurrences in all suc-
cessfully evaluated pipelines. Finally, we summed this value for all components
of the same type (e.g. scaling algorithms).
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Table 1. Dataset information, number of executed pipelines, and test accuracy of the
best pipeline. Higher accuracy per dataset is underlined.

Dataset # Pipelines Test Accuracy
Name # Rows # Columns In AutoSklearn? CLS-Luigi AutoSklearn CLS-Luigi AutoSklearn
higgs 98050 28 - 1183 120 0.731 0.733

numerai28.6 96320 21 - 1183 233 0.515 0.512
mozilla4 15545 5 X 1183 379 0.963 0.950

eeg-eye-state 14980 14 X 1183 192 0.977 0.963
bank-marketing 10578 7 - 1183 219 0.824 0.831

phoneme 5404 5 - 1183 142 0.915 0.885
sylvine 5124 20 - 1183 205 0.947 0.945

wilt 4839 5 X 1183 227 0.983 0.981
spambase 4601 57 X 1183 71 0.939 0.939
madelon 2600 500 X 1183 746 0.915 0.896

ozone-level-8hr 2534 72 X 1183 163 0.949 0.941
kc1 2109 21 - 1183 116 0.891 0.863

steel-plates-fault 1941 33 X 1183 221 1.0 0.995
pc4 1458 37 X 1183 191 0.911 0.911

qsar-biodeg 1055 41 X 1183 109 0.849 0.811

Table 2. Total run seconds per pipeline, the estimated time savings per component,
and the number of failed and timed-out pipelines in CLS-Luigi.

Dataset # Pipelines Total Run Estimated Saved Seconds for % Saved
Failed Timed-out Seconds Imputer Scaler Feature Preproc. Run Time

higgs 0 135 18074.67 42.33 132.52 1237.42 7.25
numerai28.6 0 127 16687.88 25.61 84.88 1019.82 6.34

mozilla4 4 1 789.12 11.65 12.16 925.24 54.6
eeg-eye-state 34 1 1043.03 9.82 24.03 726.42 42.16

bank-marketing 0 0 440.93 10.8 12.2 285.47 41.16
phoneme 0 0 207.02 7.8 17.86 80.21 33.84
sylvine 4 1 464.59 12.71 42.59 114.86 26.81

wilt 34 1 245.15 10.02 15.84 60.74 26.10
spambase 0 0 435.39 14.94 87.54 155.07 37.17
madelon 19 33 4916.87 28.17 313.55 1742.27 29.77

ozone-level-8hr 19 1 540.99 9.97 49.18 140.65 26.97
kc1 0 0 136.2 9.18 17.53 48.22 35.49

steel-plates-fault 9 2 343.02 9.51 20.7 56.58 20.19
pc4 4 1 238.04 9.27 18.78 51.49 25.04

qsar-biodeg 0 0 132.1 8.86 17.66 64.19 40.71
Geometric Mean 696.37 12.79 33.60 204.70 26.51

The total run time for all pipelines across all datasets ranges from 132 to
18074 seconds, with an average time of 696 seconds. Our estimation reports the
time savings between 7 to 42 seconds, and 12 to 313 seconds for imputer and
scaler components respectively. For feature preprocessor components, the time
savings are significantly higher and are between 48 and 1742 seconds. This is
to be expected, since feature preprocessing algorithms (such as principle compo-
nent analysis and feature selection using classification models) may require more
time in comparison to scaling and imputation algorithms. Apart from the dataset
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higgs and numerai28.6, the caching mechanism has (approximately) saved be-
tween 20% to 54% in run seconds. As for the datasets higgs and numerai28.6,
our investigations show that many pipeline tasks reached their timeout limit of
100 seconds. Thus, the total run time was significantly prolonged and the caching
benefits were lessened. Apart from reaching the timeout limit, some CLS-Luigi
pipelines fail due to (1) algorithms transforming inputs into infinity values, (2)
algorithms being not compatible with negative inputs, or (3) feature selection
algorithms resulting in no “no selected” features. These issues also affect some
regions of the AutoSklearn’s search space. Lastly, since the same pipelines are
executed for all datasets, pipelines are synthesized only once and saved. The syn-
thesis procedure lasted less than 2 seconds, and loading the pipelines for reuse
lasted less than 0.5 seconds.

5 Decision Pipeline Example

In this section, we use the shortest path problem with uncertain cost to illustrate
the capabilities of CLS-Luigi. Our modeling is inspired by the experiments from
the original PyEPO paper [22] and can re-use a large part of its implementation
of several algorithms. Also, we report on the realized computational benefits of
CLS-Luigi’s caching mechanism. We proceed to show how our model can use a
single pipeline template for multiple solution approaches.

The objective of the shortest path problem, considered in [22], is to find the
cost-minimal path in a grid from the northwest to the southeast corner. We
implement a pipeline template that includes two different pipeline structures.
Each structure corresponds to a different approach to solving the shortest path
problem with uncertain cost: a two-stage approach (predict-then-optimize) and
an end-to-end learning approach (smart predict-then-optimize). As depicted in
Figure 4, the first component in the template handles generating features and
cost vectors synthetically and splitting them into disjoint training and testing
subsets. The generation of data is parameterized (as in PyEPO) using the grid
size, the number of features, the number of instances, the polynomial degree, the
half-noise width, and a seed value for reproducibility. Using the generated costs
from the previous task, optimal solutions and objective values are computed by
[8]. Next, using a specialized SolutionApproach, a predictive model is trained to
predict the cost of the testing data. We specialize the EndToEndLearning and
the TwoStage solution approaches. We further specialize an EndToEndLearning
using the SPOPlus (with PyEPO’s implementation) that requires the train-
ing dataset as well as its optimal solutions and objective values. As for the
TwoStage approach, we specialize four MultiOutputRegression models. Note that
the pipelines using multi-output regression models are structurally different, only
requiring the synthetic dataset and not the optimal solutions and objective val-
ues. Following PyEPO, we implement RandomForest and LinearRegression mod-
els. However, given the simplicity of extending pipeline templates in CLS-Luigi,
we also added a LightGBM Model with default hyperparameters and another
LightGBM model with linear tree (method to use a linear model at leaves).
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After training and predicting costs, GenerateSolutionsForPredictedCosts com-
putes solutions and objective values for the predicted costs via Gurobi. Lastly,
the pipeline template ends with the Evaluation component for computing the
normalized regret metric, which is defined (informally) as the difference between
the cost incurred by the decision of an algorithm and the cost of the optimal
decision. In contrast to AutoML frameworks, such pipelines integrate algorithms
from different fields, namely prediction and optimization.

yt,vSyntheticDataGenerator OptimalSolutionsAndObjectiveValues SolutionApproach GenerateSolutionsForPredictedCosts Evaluation

EndToEndLearning TwoStage

MultiOutputRegressionSPOPlus

LightGBMLinearTreesLightGBMLinearRegressionRandomForest

yt,vxt,v

objv solv

solpred
ypred

objt,v
solt,v

yv
ypred

  x, y: features and costs
  obj: objective values
  sol: solutions
  t, v: training and validation 
  pred: prediction 

Fig. 4. Visualization of pipeline template for solving the shortest path problem. Refer
to Figure 1 for the meaning of box colors and arrow types.

5.1 Assessing Run Times

To assess the run times of the resulting pipelines, we execute them using different
parameter combinations and present our results below.

Computational Setup As stated, feature and cost vectors are generated at
the beginning of the pipelines and are generated for a 5x5 grid. To replicate the
experiment of PyEPO, we executed the five resulting pipelines using all com-
binations of the parameters training dataset size (100, 1000, 5000), polynomial
degree (1, 2, 4, 6), and half-width noise (0.0, 0.5). To account for the validation
dataset, an additional 1000 rows are always generated. Finally, every combina-
tion is executed 10 times using unique seed values, which results in a total of 240
parameter combinations and 1200 pipeline executions. To run this example, we
used the same hardware and software versions from Section 4. In terms of the
regret metric, we were able to reproduce the PyEPO results with an expected
average rank of our extensions. Hence, we only discuss computational efficiency.

Computational Efficiency Recall that our pipeline template generates 5
pipelines, each with 5 components, which share the first two components, namely
SyntheticDataGenerator and OptimalSolutionsAndObjectiveValues. Thus, for a
given parameter combination, CLS-Luigi runs these two components only once
and caches their output. This achieves a 32% (17 out of 25 components) decrease
in the number of executed components per parameter combination. In Table 3
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Table 3. Total run seconds and estimated saved seconds per parameter combination.
Each row shows the minimum and maximum values for an aggregate of 10 runs.

Training Total Estimated Saved Seconds for Generating % Saved
Dataset size Run Seconds Synthetic Data Optimal Solution Run Time

100 98-100 0.35-0.41 23-24 19
1000 272-296 0.6-0.71 41-42 12-13
5000 1027-1183 1.69-2.03 124-125 9-11

Geometric Mean 314.48 0.77 49.86 13.79

we show the run time of pipelines per parameter combination and the total saved
time for generating the data and computing the optimal solutions and objective
values. Note that the values are very similar for all runs with the same training
sizes, as such we only show the minimum and maximum values. Here, the total
run time and the estimated saved seconds per component are summed for all 10
seeds. The estimated saved seconds per component and seed are computed by
multiplying the run time of the respective component by 4 (since this compo-
nent runs once for all 5 pipelines). It is observable that the total run time for
all pipelines is very similar for the same training dataset size. Moreover, Syn-
theticDataGenerator component takes considerably less time in comparison to
OptimalSolutionsAndObjectiveValues. In summary, the caching mechanism (ap-
proximately) reduces the total run time by 19% for datasets with 100 training
rows. Similarly, for datasets with 1000 and 5000 training rows, the run time is
reduced by 12-13% and 9-11% respectively. Finally, using the geometric mean,
we estimate an average reduction in run time by 13.79%.

6 Conclusion and Outlook

We introduced CLS-Luigi, a framework for modeling and synthesis of analytics
pipelines based on a repository of algorithms. CLS-Luigi stands out for Python
developers because of its simplicity, allowing pipelines to be modeled within code
instead of separately in another language. It leverages the pipeline execution
strengths of Luigi, which is easy to set up and offers good abstractions for con-
structing analytics pipelines out of the box. Our framework combines Luigi with
CLS to synthesize pipelines systematically. Unlike conventional AutoML frame-
works, which are limited in scope and extendability, CLS-Luigi goes beyond the
state-of-the-art AutoML frameworks by automating the synthesis of pipelines
that include both ML and optimization algorithms. It achieves this while inte-
grating popular analytics tools like Scikit-Learn and Gurobi. Our framework also
showcases the expressiveness to accommodate multiple optimization paradigms
within a single pipeline template, allowing for a consistent evaluation. Extending
a pipeline template with new algorithms comes at a negligible cost and incor-
porating structural variance in pipelines is also covered and can be explicitly
modeled. Our framework also offers additional modeling capabilities that have
not been discussed so far. Yet, there exists a trade-off between the expressive-
ness and simplicity of models. CLS-Luigi caches outputs and avoids redundant
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execution of mutual pipeline tasks. The benefits of this are shown in an example
implementation that imitates AutoSklearn’s pipelines. CLS-Luigi outperformed
AutoSklearn in both accuracy scores and number of executed pipelines across a
majority of the selected datasets.

There exists some limitation to CLS-Luigi that we are addressing in future
work: Our brute-force enumeration approach runs into scalability issues for large
datasets, despite caching outputs. Additionally, hyperparameters are still set
manually by users. Also, we depend on Luigi’s simple pipeline scheduling imple-
mentation, and executing multiple pipelines with multiple workers is yet to be
tested as well as hardware parallelism.

In our next steps, we want to integrate a Monte Carlo Tree Search to select
pipeline components based on CLS-Luigi’s tree grammar and incorporate a hy-
perparameter optimization. To facilitate implementation we want to develop and
integrate a visualization for pipeline templates, dependency graphs, and individ-
ual pipelines. Finally, we intend to apply our framework to more realistic ML
and optimization use cases and enhance its modeling capabilities, for example,
to describe data semantically.
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Abstract. In many real-world problems, one faces the problem of hav-
ing to make decisions considering several con�icting objectives. In such
problems, the solution is a set of policies rather than a single one. This
leads to multi-objective reinforcement learning problems (MORL) which
have not received much attention until recent years by the reinforcement
learning community.
In this work, we propose coupling the R2 indicator with Pareto Q-
learning. The R2 indicator has been successfully used for multi-objective
optimization problems making it a good candidate for MORL. We tested
our approach on several problems from MO Gymnasium and compared
it with HB-MORL, which uses the hypervolume indicator. Our prelim-
inary results show that the novel algorithm obtains competitive results
and that could be an interesting alternative when dealing with MORL
problems.

Keywords: Multi-objective reinforcement learning, Performance indi-
cators, R2 indicator

1 Introduction

Reinforcement Learning (RL) [4] is one of the branches of machine learning.
RL focuses on training agents to act in an environment by learning a policy to
maximize cumulative reward. Typically, this is modeled by a Markov decision
process (MDP). MDPs are characterized by states (S), actions (A), transition
functions (T : S × A × S → [0, 1]), a discount factor (γ ∈ {0, 1}), and reward
functions (R : S×A×S → R). Multi-objective reinforcement learning (MORL)
[5] extends RL to problems where we need to consider reward functions (R :
S × A × S → Rk) where k is the number of rewards. Note that in this kind of
problems, the solution is a set of policies rather than a single solution.

To tackle this kind of problems, di�erent approaches have been proposed in
the literature. One of the most common is to solve a scalarized version of the
problem (for instance using a weighted sum approach) [8]. Other approaches
include using the hypervolume indicator to �nd a set of policies [7]. The scalar-
ized approaches have the advantage that it is possible to use all the algorithms
of single-objective RL but require that the decision-maker de�nes his/her pref-
erences. While approaches such as the hypervolume avoids the need to de�ne
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preferences before the search. However, the hypervolume indicator has a high
computational cost as the number of objectives increases. Due to space limita-
tion, we refer the interested reader to [3] for further details on MORL.

In light of this, we propose to use the R2 indicator [2]. This indicator can
be seen as a compromise between previous approaches. On one hand, it can ap-
proximate the solution set (or be adjusted with the decision-maker preferences)
and it has a polynomial complexity. This indicator has been successfully used in
several algorithms for multi-objective optimization (e.g. [6]).

The rest of the document is structured as follows: Section 2 describes the
proposed algorithm, Section 3 shows the comparison to HB-MORL on several
academic test functions from literature, and �nally 4 concludes the work and
describes several future research directions.

2 R2 Based Multi-objective Reinforcement Learning

Algorithm

In this section, we introduce our proposed algorithm. The algorithm adapts [7]
to use the R2 indicator instead of hypervolume. Algorithm 1 shows the R2-based
MORL algorithm which is based on Q-learning with an ϵ-greedy policy. The main
di�erence occurs in line 8, where the action is selected based on the contribution
to the R2 indicator. Further, Algorithm 2 shows the action selection where the
contribution to the R2 indicator is used as proposed in [6].

Algorithm 1 R2-based MORL

1: Initialize Q(s, a, o) arbitrarily
2: for each episode t do
3: Initialize state s, l = {}
4: repeat
5: Choose action a from s using a policy derived from the Q
6: Take action a and observe state s′, reward vector r ∈ Rk

7: Add o to l
8: maxa′ ← gR2BAS(s′, l′)
9: for objective o do
10: Q(s, a, o)← Q(s, a, o) + α[r(s, a, o) + γQ(s′,max( a

′), o)−Q(s, a, o)]
11: end for
12: s← s′

13: until s is terminal
14: end for

3 Empirical Preliminary Results

In this section, we show the empirical results of the novel algorithm and compare
it with HB-MORL. For this purpose, we use MO Gymnasium [1]. This frame-
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Algorithm 2 Greedy R2-based Action Selection (gR2AS(s, l))

1: contributions← ∅
2: for all ai ∈ A of state s do
3: o← {Q(s, ai, o1), . . . , Q(s, ai, ok)}
4: r2c← r2Contribution(l + o)
5: Append r2c to contributions
6: end for
7: return argmaxa contributions

work provides a standardized platform for comparing di�erent multi-objective re-
inforcement learning algorithms through various test environments: Tree Fruits
(TF): Balances maximizing fruit collection with minimizing time/distance.Resource
Gathering (RG): Aims to optimize the amount and diversity of resources
within time limits. Deep Sea Treasure (DST): Focuses on e�ciently seeking
valuable underwater treasures. Mountain Car (MC): Targets reaching the
hilltop using momentum with an emphasis on e�ciency, like reducing energy
or time.Four Room (FR): Tests agent navigation and goal achievement in a
complex, multi-room layout. For both algorithms, we performed 20 independent
experiments and were performed on a Google Compute Engine server utilizing
Python 3. The data in Table 1 shows that R2-MORL outperforms HB-MORL
in all �ve environments. Figure 3 con�rms these preliminary results, indicating
higher hypervolume values for the proposed approach.

Table 1. Environment, Parameters (Objective, and Episodes, Reference Point (R),
Ideal Point (I)), and mean HV results of both algorithms.

Env. k Episodes Reference point(R) I R2-MORL HB-MORL

T.F. 6 200 (-5,...,-5) (10,...,10) 1.67e+06 1.18e+06
R.G. 3 200 (-10,-10,-10) (0,1,1) 1,210 67
D.S.T 2 200 (0,-25) (124,21) 156.85 84.25
M.C. 3 100 (-110,-100,-50) (-1,0,0) 3.65e+06 2.46e+06
F. R. 3 100 (-110,-110,-110) (100,100,100) 1.46e+06 1.37e+06

4 Conclusions, Future Work

In this work, we have proposed to use the R2 indicator in the context of MORL.
We compared the approach to HB-MORL on several academic environments
from two to six objectives with competitive results. The preliminary results
show a promising path for further studying the R2 indicator in the RL context.
In future work, we plan to explore di�erent indicators and algorithms, focusing
on adaptability and scalability concerning the number of objectives. Finally, we
would like to apply the approach to real-world applications.
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Fig. 1. Median hypervolume of both algorithms on the selected environments.
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Abstract. Fleet and crew scheduling belong to the significant problems
in the airline industry. Especially after the Covid-19 pandemic, robust-
ness issues become even more important in this realm. This asks for
advanced solution methods and appropriate modeling approaches. To
support this avenue, a mixed-integer mathematical model is presented
together with a matheuristic approach consisting of a hybridization of
particle swarm optimization (PSO), simulated annealing (SA) and math-
ematical programming of sub-problems. It is shown that the proposed
matheuristic is a promising approach deserving further consideration.
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1 Motivation

Optimization of scarce and expensive resources is a vital task in the aviation

industry. In the extremely competitive environment and under huge difficulties

such as the Covid-19 pandemic, airline companies have to find practical cost-

reduction methods in order to survive as well as avoid large increases in their

ticket prices. A considerable proportion of airline expenses is related to the

management of its fleet and crew. Hence, optimal or close-to-optimal scheduling

of these resources can considerably help airlines to raise their benefits.

Although airline fleet and crew scheduling are considered as two separate

problems in many works, they are actually very inter-related. This is due to

the fact that each aircraft type or trip (flight) needs its own specialized crew

members. In other words, each pilot or cockpit member cannot direct all the

aircraft types of an airline or each flight attendant cannot be used for all trips

because of her/his travel requirements or some crew members are better to be

used for special trips because of their nationalities or languages they speak. The

fleet assignment is done based on the passenger demands of the flights and the

capacities as well as facilities of the available aircraft. Simultaneously, the crew

members have to be assigned to flights regarding the aircraft and destinations.
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The maximum working hours of the aircraft and crew, and their minimum rest

time afterwards must be respected in any schedule. Note that the implications

of crew rostering on airline operations are addressed, e.g., in [12].

Uncertainty in the inputs is a challenging factor in such a problem, which

we should deal with in real-world settings. Robust optimization can be regarded

as an appropriate technique to take non-deterministic inputs into account. This

method is used in some works like [16] for the airline fleet assignment, [19]

for the airline crew scheduling and in [5] for an integrated airline fleet and crew

scheduling problem (AFCSP). The idea in [5] relates to incorporating robustness

into the problem by making some important assumptions regarding the problem

settings. In that paper, “to avoid the curse of dimensionality, crew connections

rather than explicit crew pairings or duties are modeled to represent the crew-

scheduling problem within the integrated model.” To achieve robustness, they

utilize the idea of purity as it was also considered by other authors. For instance,

fleet purity ensures that the number of fleet types serving a given “station” does

not exceed a specified limit. In addition, station purity may be included into

a model by limiting the number of fleet types and crew bases allowed to serve

each airport. As another related work, [15] presents algorithms for airline crew

scheduling under uncertainty (though not in an integrated fashion).

A good literature review on airline crew scheduling is provided by [4]. Math-

ematical modeling can be regarded as a practical method if the problem or its

sub-problems are tractable by standard solvers. [13] is an attempt in mathemat-

ical modeling of a specific version of the AFCSP.

In this work, we develop a novel comprehensive mathematical model for the

AFCSP based on real conditions and regulations. Due to the computational com-

plexity of solving the entire model, a practical hybrid (matheuristic) approach

consisting of the particle swarm optimization (PSO) [9], simulated annealing

(SA) [18] and exact solutions of the sub-problems is devised. Such methods

are called matheuristics due to their integrated use of both mathematical pro-

gramming and metaheuristics.1 Uncertainties are considered for the availability

periods of the aircraft and crew members, and handled by a robust optimiza-

tion approach. The performance of our method is tested on a set of real-based

generated instances by being compared with a state-of-the-art method from the

literature.

In summary, we present a modeling approach which extends the previous

ones by considering more real elements and propose a suitable solution method-

1 For more details about metaheuristics and matheuristics, see [8] and [10], respec-
tively.
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ology which is capable of locating solutions of better qualities compared to other

alternative solution methods in tolerable computational times.

The organization of the rest of this paper is as follows: Section 2 describes

the focused problem, its importance and necessities. Consequently, Section 3

presents the developed mathematical model. Our solution approach is explained

in Section 4. Section 5 is dedicated to the presentation of the results and related

comparisons. Finally, Section 6 draws the overall conclusions of this work and

shows some avenues for future research.

2 Problem statement

In the AFCSP, there are a set of aircraft and a set of crew members which have

to be assigned to a set of flights. The aircraft are all initially at the airline hub,

whereas all the crew members can have their own hub, which is their residence

place. The goal is to minimize the total costs of using as well as transferring

the aircraft and crew. The required cockpit and other board members have to

be allocated to flights regarding the chosen aircraft. If an aircraft or a crew

member is not or has not arrived by a previously scheduled flight at the origin

airport of its/his/her next flight, they should be transferred there and this incurs

extra costs. A very important task is to respect the maximum consecutive usage

duration of aircraft before returning to the airline hub for the regular service

and the maximum working hours of the crew before taking a short and long

rest. While the short rest can be at any airport, the crew must return to their

hub for taking the long rest.

A big challenge in this problem is that some aircraft and crew members may

fail to work within some time slots, which were deemed as their working periods

before. Therefore, there are several possible scenarios in this regard and it is

very important to provide schedules which are good enough considering all such

scenarios.

3 Mathematical Modeling

In the AFCSP, we have a set of aircraft A, a set of crew members C, a set of

airports L, and a set of flights F , which must be done by available aircraft and

crew. C is divided into two sets of cockpit members C1 such as pilots and other

board members C2 like flight attendants. The necessary numbers of cockpit and

other board members on aircraft a are NCCNa and NOCNa. The set of crew

members who can be assigned to flight f regarding their travel requirements or

language skills (in case of flight attendants, for example) are shown by Cf , while
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the set of cockpit members who have the expertise to fly aircraft a are denoted

by C1,a. Each crew member has a hub airport related to his/her residence loca-

tion hc. Flights have each an origin of , a departure time depf , a destination df ,

and an arrival time at destination arrf . The cost of operating flight f by aircraft

a is aoca,f , which is calculated based on the flying cost of a per unit of time,

the flight duration of f , empty seats or lost demand according the estimated

number of passengers. Nevertheless, the cost of using crew member c on flight f ,

cacc,f , is based on his/her salary per unit of time, the flight duration, etc. The

costs of transferring aircraft a and crew member c from airport l1 to l2 without

being used for any flights are shown by EMAa,l1,l2 and EMCa,l1,l2 , respectively,

and the required transfer times are rttaa,l1,l2 and rttca,l1,l2 , respectively. Each

crew member has a short resting duration of at least MCSc and a long rest-

ing duration of at least MCLc time units at his/her hub. The short and long

resting durations have to be scheduled before having worked for MWCTSc and

MWCTLc consecutive time units, respectively. However, the aircraft must have

a minimum service period of MAa at the airline hub AH ∈ L after having been

used for MWATa consecutive hours.

The main decision variables of our model are as follows: xa,f and yc,f which

are binary variables equal to one if aircraft a and crew member c are assigned

to flight f . IAf1,f2,a and ICf1,f2,c are other binary variables, which are true if

flight f2 is directly operated after f1 by aircraft a and crew member c. We have

binary location values LAa,l,t, LCc,l,t which are true in case that a and c are at

airport l at time t, respectively. MAa,l1,l2,t and MCc,l1,l2,t are binary variables

equal to 1 if the transfers of a and c from l1 to l2 happen at time t. WATa,t and

WCTc,t are binary variables, which are 1 if the aircraft/crew is working at time

t.

The notations and formulations of the developed holistic mathematical model

for the AFCSP are presented as follows:

Notations

Inputs
T : the planning horizon;
A: the set of aircraft;
C: the set of crew members;
C1: the set of cockpit crew members;
C2: the set of other board crew members;
Cf : the set of crew members who can be assigned to flight f ;
CC1,a: the set of cockpit members who can be assigned to aircraft a;
L: the set of airports;
hc: the hub of crew c;
H: the airline hub;
reata,f : the time required to make aircraft a ready for flight f ;
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rectc,f : the time that crew member c requires to get ready for flight f ;
F : the set of flights;
of : the origin of flight f ;
depf : the departure time of flight f ;
df : the destination of flight f ;
arrf : the arrival time of flight f ;
aoca,f : the cost of operating flight f by aircraft a;
cocc,f : the cost of using crew member c in flight f ;
MWATa: the maximum consecutive working hours of aircraft a;
MASa: the minimum service time of flight a;
MWCTSc: the maximum consecutive working hours of crew member c;
MCSc: the minimum resting time of crew member c;
MWCTLc: the maximum consecutive working hours of crew member c before return-
ing to his/her hub and taking a long rest;
MCLc: the minimum duration of the long resting time of crew member c at his/her
hub.
EMAa,l1,l2 : the cost of empty movement of aircraft a from airport l1 to l2 without any
scheduled flight;
EMCc,l1,l2 : the cost of transferring crew member c from airport l1 to l2 without work-
ing on any scheduled flight;
rttaa,l1,l2 : the required time to move aircraft a from airport l1 to l2;
rttca,l1,l2 : the required time to transfer crew member a from airport l1 to l2.

Binary variables

xa,f : =1 if aircraft a is assigned to flight f ;
yc,f : =1 if crew member c is assigned to flight f ;
IAf1,f2,a: =1 if flight f2 is directly operated after f1 by aircraft a;
ICf1,f2,c: =1 if crew member c is directly assigned to flight f2 after f1;
LAa,l,t: =1 if aircraft a is at airport l at time t;
LCc,l,t:=1 if crew member c is at airport l at time t;
MAa,l1,l2,t:=1 if aircraft a is moved without operating any flight from airport l1 to l2
at time t;
WATa,t:=1 if aircraft a is used for a flight at time t;
WCTc,t:=1 if crew member c is working at time t;
ARa,t=1 if a resting duration of aircraft a for the regular service begins at time t;
SCRc,t:=1 if crew c takes a short rest beginning at time t;
LCRc,t:=1 if crew c takes a long rest beginning at time t.

Min Z =
∑
a

∑
f

aoca,fxa,f +
∑
c

∑
f

cocc,fyc,f

+
∑
a

∑
l1

∑
l2

∑
t

MAa,l1,l2,tEMAa,l1,l2

+
∑
c

∑
l1

∑
l2

∑
t

MCc,l1,l2,tEMCc,l1,l2 (1)

∑
a

xa,f = 1 ∀f ∈ F (2)

xa,f

∑
c∈CC1,a

yc,f = NCCNa ∀f ∈ F,∀a ∈ A (3)
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xa,f

∑
c∈C2

yc,f = NOCNa f ∈ F,∀a ∈ A (4)

2IAf1,f2,a ≤ xa,f1 + xa,f2 ∀f1, f2 ∈ F,∀a ∈ A (5)

IAf1,f2,a ≤ 1−
∑
f∈F,

arrf1≤depf≤depf2

xa,f

+ |F |(1− IAf1,f2,a) f, f1, f2 ∈ F,∀a ∈ A (6)

IAf1,f2,a ≥ xa,f1xa,f2(1−
∑
f∈F,

arrf1≤depf≤depf2

xa,f )

f1, f2 ∈ F,∀a ∈ A (7)

2ICf1,f2,a ≤ yc,f1 + yc,f2 ∀f1, f2 ∈ F,∀c ∈ C (8)

ICf1,f2,a ≤ 1−
∑
f∈F,

arrf1≤depf≤depf2

yc,f

+ |F |(1− IAf1,f2,a) f, f1, f2 ∈ F,∀c ∈ C (9)

ICf1,f2,a ≥ ya,f1ya,f2(1−
∑
f∈F,

arrf1≤depf≤depf2

ya,f )

f1, f2 ∈ F,∀c ∈ C (10)

xa,f ≤ LAa,of ,depf−reata,f ∀a ∈ A, f ∈ F (11)

yc,f ≤ LCc,of ,depf−recta,f ∀a ∈ A, f ∈ F (12)

depf2∑
t=arrf1

LAa,df1 ,t ≥ (depf2 − arrf1)IAf1,f2,a

∀f1, f2 ∈ F,Df1 = Of2 (13)

depf2∑
t=arrf1

LCc,df1 ,t ≥ (depf2 − arrf1)ICf1,f2,c

∀f1, f2 ∈ F,Df1 = Of2 (14)

IAf1,f2,a ≤
depf2−reata,f2

−rttaa,df1
,of2∑

t=arrf1

MAa,df1 ,of2 ,t

∀f1, f2 ∈ F, df1 ̸= of2 (15)

ICf1,f2,a ≤
depf2−recta,f2

−rttca,df1
,of2∑

t=arrf1

MCa,df1 ,of2 ,t

∀f1, f2 ∈ F, df1 ̸= of2 (16)



308 A. Nourmohammadzadeh and S. Voß

depf2∑
t=tt+rttaa,df1

,of2

LAa,df1 ,t ≥ (depf2 − tt− rttaa,df1 ,of2
)

× IAf1,f2,aMAa,df1 ,of2 ,tt

f1, f2 ∈ F, df1 ̸= of2 , arrf1 ≤ tt ≤ depf2 − reata,f2 (17)

depf2∑
t=tt+rttcc,df1

,of2

LCc,df1 ,t ≥ (depf2 − tt− rttcc,df1 ,of2
)

× IAf1,f2,cMCc,df1 ,of2 ,tt

f1, f2 ∈ F, df1 ̸= of2 , arrf1 ≤ tt ≤ depf2 − recta,f2 (18)

(arrf − df − reata,f )xa,f ≤
∑

t=deff−reata,f

WATa,t ∀a ∈ A,∀f ∈ F (19)

(arrf − df − rectc,f )yc,f ≤
∑

t=deff−recta,f

WCTc,t ∀c ∈ C, ∀f ∈ F (20)

WATa,t ≥
∑
f,

depf−reata,f≤t≤arrf

xa,f a ∈ A, t ∈ T (21)

WCTc,t ≥
∑
f,

depf−rectc,f≤t≤arrf

yc,f c ∈ C, t ∈ T (22)

SRa,t ≥ 1−
t+rt∑
tt=t

WATa,tt t ∈ T,MASa ≤ rt (23)

SCRc,t ≥ 1−
t+rt∑
tt=t

WCTa,tt t ∈ T,MCSc ≤ rt ≤MCLc − 1 (24)

LCRc,t ≥ 1−
t+rt∑
tt=t

WCTa,tt t ∈ T,MCLc − 1 ≤ rt (25)

ARa,t1 +ARa,t2 − 2− |T |(2−ARa,t1 −ARa,t2) ≤MWATa − (t2 − t1)

∀a ∈ A,∀t1, t2 ∈ T (26)

SCRc,t1 + SCRc,t2 − 2− |T |(2− SCRc,t1 − SCRc,t2) ≤
MWCTSc − (t2 − t1)

∀a ∈ A,∀t1, t2 ∈ T (27)

SLRc,t1 + SLRc,t2 − 2− |T |(2− SLRc,t1 − SLRc,t2) ≤
MWCTSc − (t2 − t1)

∀a ∈ A,∀t1, t2 ∈ T (28)

LCc,hc,0 = 1 ∀c ∈ C (29)

LCc,hc,t = SLRc,t ∀c ∈ C, ∀t ∈ T (30)

LAa,H,0 = 1 ∀a ∈ A (31)

LAa,H,t = ARa,t ∀c ∈ C,∀t ∈ T (32)
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∑
l1

MAa,l1,l2,t ≤ LAa,l2,t+rttarttaa,l1,l2

∀a ∈ A,∀l2 ∈ L,∀t ∈ T (33)∑
l1

MCa,l1,l2,t ≤ LCc,l2,t+rttarttcc,l1,l2

∀c ∈ C, ∀l2 ∈ L,∀t ∈ T (34)∑
l

LAa,l,t ≤ 1 ∀a ∈ A,∀t ∈ T (35)

∑
l

LCc,l,t ≤ 1 ∀c ∈ C,∀t ∈ T (36)

(1) is the objective function. The first two terms calculate the operating costs

of the aircraft and crew, whereas the two next terms add the costs of transferring

aircraft and crew without scheduled flights. (2) implies the assignment of exactly

one aircraft to each flight. We assign the required number of cockpit and other

crew members to flights by (3) and (4). Note that these constraints are nonlinear.

Constraints (5-10) set the IAf1,f2,a and ICf1,f2,c equal to 1 only if the flights are

performed consecutively by the same aircraft and crew. The aircraft and crew

can be assigned if they are available at the corresponding airport and time. This

is applied by constraints 11 and 12, respectively.

Updating the locations of aircraft and crew members if they are used for two

consecutive flights that the destination of the first and origin of the second are

the same airport is done by (13-14). (15-16) set the location if the airports of

flights are different. (17-18) are related to transferring aircraft and crew. If an

aircraft or crew member is assigned to a flight, the flight duration is considered

as its/his/her working hours. This is implied by constraints (19-20). Constraints

(21-22) ensure that there is no assignment at the resting time of aircraft/crew.

The resting time of aircraft is guaranteed by (23), while the short and long

resting time of crew are ensured by (24) and (25), respectively. (26-28) are for

respecting the maximum consecutive working time of aircraft and crew before

taking the resting times. (29) and (30) express that crew members are at their

hubs at the beginning of the planning horizon and also at the long resting time.

(31-32) set the airline hub (H) as the initial and service location of aircraft.

Changing the locations of aircraft and crew after transferring them to a new

airport is implemented by (33-34). Finally, (35-36) enforce that each aircraft

and crew member can be at most at one airport at a specific time.

Variable declarations are formalized as indicated in the notation above and

not formalized for brevity.
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The model and subsequent optimization strategy are transformed into their

robust versions, whereby multiple scenarios are taken into account for the un-

certain parameters. Every solution derived from the model is associated with a

particular objective value based on each scenario. The robust objective value for

each solution represents the most unfavorable outcome, considering all potential

scenarios. Consequently, we can ascertain that there are no inferior results with

respect to that particular solution. This aligns with the definition of robustness

as outlined in [1]. Within our robust optimization framework, our aim is to iden-

tify the solution linked to the least unfavorable value across all scenarios. In

other words, from a mathematical perspective, with reference to Equation (1)

in the model:

Minscen∈Scen (Max Z(scen))

where Scen denotes the set of conceivable scenarios concerning the uncertain

parameters, scen denotes an individual scenario within this set, and Z(scen)

signifies the objective value corresponding to scen.

4 Approach

In this work, it is assumed that aircraft and crew members can be unavailable

during some random periods. So different availability scenarios are considered

and the problem is solved based on all the scenarios and the worst objective value

of them and its corresponding solution are regarded as the robust objective value

and robust solution.

Due to the high computational complexity, a matheuristic algorithm is de-

signed to find good quality solutions in (almost) real time. This algorithm con-

sists of a main PSO framework where in each iteration apart from the move-

ments of the particles (solutions) towards their best experienced positions and

the global best position of all particles so far, some solutions are chosen prob-

abilistically according to their quality to be improved using the SA concept by

neighbourhood searches, and also some other solutions are similarly selected

to be improved through solving the mathematical model related to a random

tractable part of them by the Baron solver [14] (which is able to handle nonlin-

earity). The size of this part is a parameter in this algorithm, which is tuned

at the beginning. This mathematical optimization process in done based on the

concept of the partial optimization metaheuristic under special intensification

conditions (POPMUSIC) [17]. The termination condition of this matheuristic is

exceeding a number of consecutive iterations without any improvement in the

best solution of the population. The pseudocode of our proposed algorithm is

shown in Algorithm 1.
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Algorithm 1: The proposed matheuristic

Data: Problem inputs
Result: A feasible solution expected to be of good quality

1 Set the parameters of the algorithm.
2 Generate nPop random candidate solutions as the initial particles.
3 Evaluate the population.
4 It = 0.
5 Initialize a variable called BO, which keeps the best objective value found so

far.
6 while It ≤MCUI do
7 Move the particles based on their new speed.
8 Evaluate the particles.
9 Choose ⌈PSA× nPop⌉ candidates from the population by the roulette

wheel selection.
10 Improve the selected candidates by neighborhood searches based on SA.
11 Evaluate the SA results, and then merge them with the previous

population.
12 Sort the total population based on the objective values.
13 Choose ⌈PMB × nPop⌉ from the best solutions and ⌈PMO × nPop⌉

based on the roulette wheel selection from other solutions and input
them in a set called PSET .

14 for Each solution spm ∈ PSET do
15 Decompose spm in K parts, i.e., the set of parts is

H = {part1, ..., partK}
16 Set P = ∅
17 while P ̸= {part1, ..., partK} do
18 Select a seed part sseed ∈ H and sseed ̸= P at random
19 Build a sub-problem R composed of sseed and its nearest D parts

(corresponding to area A)
20 Optimize R through solving the mathematical formulation by the

Baron solver
21 if R has been improved then
22 Update solution S
23 P ← ∅
24 else
25 Include sseed in P
26 end

27 end

28 end
29 Merge the POPMUSIC results with the population.
30 Sort the population based on the objective value and choose the first nPop

best of them as the new population.
31 Set BO = Objective value of the first solution of the population.
32 if BO is improved in comparison to its previous value then
33 It = 0
34 else
35 It = It+ 1
36 end

37 end
38 Report BO.
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A feasible solution is encoded as a string, where each element corresponds

to one variable and contains a real value between 0 and 1. These values can

be easily converted to the equivalent values of the variables. The constraints

are respected by generating values of the variables one by one according to the

alphabetical order in their feasible interval. These intervals are calculated based

on the amounts of the already filled variables. The initial population is generated

at random.

The hyper-parameter tuning of the algorithm is done by the response surface

method (RSM) ([2]).

5 Results

Our algorithm undergoes testing on various test instances constructed using data

from an airline with a hub situated in the Middle East. These instances involve

varying sizes of aircraft sets, with corresponding adjustments in crew members

and flights directly correlating to the number of considered aircraft. The range of

aircraft varies from 10 to 100, while the number of flights spans from 400 to 4000.

The crew size and their location distributions align with the considered fleet and

flights. Five types of aircraft are under consideration, with the proportion of each

type reflecting their real presence in the airline’s fleet. Planning is projected

over a one-month horizon, with aircraft and crew resting times conforming to

established regulations [11], [3]. Other elements of the scenario are derived from

the airline’s available data sheets.

Random unavailable periods are considered for 2% of the aircraft and 5% of

the crew. For each instance, 10 random scenarios of uncertainty are generated.

In each scenario, the aircraft and crew subjected to unavailability are chosen at

random, and they are considered to be unavailable within a random contiguous

period with a duration equal to 0.1 of the planning horizon.

A state-of-the-art metaheuristic solution method, specifically the vibration

damping optimization [13], is selected from existing literature, and it has demon-

strated successful application in addressing a variant of the AFCSP. Further-

more, in order to evaluate the impact of various components within our matheuris-

tic approach, we conduct it once without mathematical optimization and another

time with a sole mathematical optimization excluding any metaheuristic oper-

ator is examined. Since the outcomes of metaheuristics and matheuristics can

vary in each execution due to their probabilistic characteristics, we perform five

runs for each instance and base our analysis on the average results obtained from

these runs.
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The average robust results obtained by our matheuristic (M), our algorithm

without mathematical programming improvements (H), the vibration damping

optimization used in [13] (S) re-implemented by us and also the pure mathemat-

ical programming (MP ) are shown in terms of the objective value and execution

time in Fig. 1 and Fig. 2. It should also be noted that (MP ) is not able to reach

the optimality and terminate within the considered one hour time limit in any

case and even does not find a feasible solution for instances with 40 and more

aircraft. Therefore, the objective values are not shown for the instances having

40 aircraft and more, and no execution times are depicted for MP .
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Fig. 1. Comparison of the objective value of the methods

It is evident that our algorithm consistently delivers superior results com-

pared to others. On the other hand, its average execution times are still toler-

able although it is slower than the methods H and S due to the mathematical

optimization embedded in it.

In Fig. 1, the lines denoted as M , S, and H, specifically the green, black,

and blue lines, may exhibit a close proximity to one another. Nevertheless, no-

table disparities exist among the outcomes yielded by these three methodologies.
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Fig. 2. Comparison of the execution time of the methods

Table 1. All results of all instances (shown by the No. of aircraft) obtained by our
algorithm M vs. vibration damping S; the shown results are multiplied by 104

M S M S M S M S M S

26.14 32.78 71.80 75.61 111.62 114.50 146.79 149.56 182.82 185.75
26.14 33.92 72.03 76.03 112.88 115.45 147.10 150.32 184.35 186.11

10 27.83 30.47 30 72.62 76.75 50 112.75 115.45 70 147.25 150.27 90 183.80 186.28
27.97 34.56 72.75 77.22 113.30 116.30 147.90 150.32 183.18 187.11
27.30 30.47 72.75 77.39 112.75 116.30 148.71 151.13 184.35 187.75

48.25 52.46 91.75 93.56 125.75 129.69 168.38 172.53 201.83 204.32
48.55 52.74 92.75 93.94 126.25 130.11 169.07 173.05 202.17 204.32

20 49.37 53.38 40 92.58 94.21 60 126.50 130.50 80 169.07 173.12 100 202.74 205.45
50.30 53.38 92.91 94.52 127.15 131.15 170.12 174.20 202.74 206.25
51.43 54.54 93.21 95.02 127.35 131.45 171.36 174.20 204.02 206.96

To illustrate, in order to elucidate the supremacy of our matheuristic over the

most competitive approach S, the objective values derived from all executions

(runs) on all instances related to these methodologies are delineated in Table

1. Evidently, the outcomes generated by our approach (M) surpass those of the
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vibration damping technique (S), underscoring a substantial advantage in the

performance of our approach over its nearest competitor.

To investigate whether a statistically significant difference exists between

the means of the objective values generated by our algorithm (M) and its rival,

vibration damping optimization (S), we carried out the Wilcoxon signed-rank

test [20]. This test offers the benefit of being non-parametric and not requiring

the assumption of normal data distribution within each group. The resulting

p-value is below 0.00001, strongly rejecting the null hypothesis of the equality

of mean values of outcomes associated with the two groups.

6 Conclusions

The conducted computational experiments show that the proposed matheuris-

tic is able to provide results of better quality as compared with other methods.

In addition, mathematical programming plays an important role in its success

because without this operator the results are considerably deteriorated. Nonethe-

less, this increases the solution time but the required computational times are

still acceptable. So, we developed a solution approach which can also outperform

a state-of-the-art method already applied to a version of the AFCSP.

Future research may incorporate further real-world requirements like delay

propagation and other issues that have already been investigated in public trans-

port, as, e.g., exemplified in [6,7]. Using our matheuristic for larger instances

including more details and enhancing its abilities are also among our future

research directions.
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Abstract. Supervised machine learning algorithms, while popular for
sentiment analysis, face limitations tied to the quantity and quality of
the training data, especially in the presence of biases or insu�cient data.
In this study, we try to address these issues investigating the impact
of Covid-19 on the Social Mood on Economy Index (SMEI), through a
bidirectional long-short term memory (BiLSTM) classi�er, computing a
daily sentiment index for Italian tweets with economic content through-
out 2020 (comprising over 11 million Tweets). We show that training the
model with labeled Covid-related Tweets improves the classi�er accu-
racy, while quantitative analysis reveals a sharper decrease in the level
of the index during the �rst lockdown period. Additionally, we explore
the e�ects of di�erent training and tuning procedures, including training
set balancing and one-step and two-step approach-es with �ne-tuning,
on the dynamics of the index. We conclude that, when the size of the
training data is small compared to the corpus, it is preferable to perform
a one-step training procedure, while balancing the training sets generally
improves the model accuracy.

Keywords: Sentiment Analysis · Deep Learning · Twitter (X) · Word
Embedding

1 Introduction

In recent years, there has been a signi�cant surge in the use of social media plat-
forms for consuming news, expressing emotions, and engaging in discussions.
The interest in using social media to measure public sentiment has been on the
rise during the last decade. National Statistical O�ces (NSOs) have explored the
use of social media messages to develop specialized sentiment indices for speci�c
domains. One of the earliest examples of adopting Twitter data to perform sen-
timent analysis tasks in NSOs is a work by the National Statistical O�ce of
Mexico (INEGI) [1]. Our goal is to assess the collective mood of Italian people
on a speci�c subset or aspect of life, enabling frequent evaluations, potentially
on a daily basis. This paper introduces a novel supervised approach to calculat-
ing a Daily Sentiment Index, speci�cally focusing on the public mood regarding
the Italian economy � the Social Mood on Economy Index (SMEI) [2]. Adopting
an unsupervised method since 2018, the Italian National Institute of Statistics
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(Istat) initially relied on lexicons due to the absence of extensive labeled Italian
tweet datasets. However, with the increasing availability of such datasets, our
investigation shifted towards advanced supervised deep learning algorithms for
sentiment classi�cation. Our approach incorporates a Bidirectional Long Short-
Term Memory (BiLSTM) neural network as a binary classi�er. We employ a
hybrid approach, which involves two steps: 1) unsupervised training of a word
embedding model on an unlabeled cor-pus of Italian tweets from the SMEI,
2) supervised training to generate the sentiment scoring model. The Covid-19
outbreak prompted us to re-train the network, incorporating a Covid-related
labeled dataset for improved accuracy. We also examined the impact of splitting
the training into two steps, resulting in four scenarios: the original model and the
re-trained model, both in one and two-step (�ne-tuning) frameworks. Addition-
ally, we investigated the e�ect of balancing training data on accuracy across all
scenarios. This study aims to assess the network's e�ectiveness in detecting the
drop in social mood related to Covid-19 during the lockdown period. The paper
follows the following structure: in Section 2, we elaborate on Embed-ding and
LSTM methods. Section 3 delves into the di�erent scenarios, details the dataset
employed in the simulations and delineates the training settings. Finally, Section
4 analyzes the dynamics of the resulting daily social mood indices, and Section
5 encapsulates the conclusions drawn from our study.

2 Methods

In this section, we brie�y outline the methodology behind our implemented mod-
els. We will provide an overview of word embeddings and LSTM networks, with
a speci�c emphasis on bidirectional LSTM networks.

2.1 Word Embeddings

Word vector spaces have become a pivotal tool in unsupervised machine learn-
ing, enabling the extraction of word representations from extensive unstructured
data [3]. These representations capture both syntactic and semantic patterns,
aligning with the distributional hypothesis: �You shall know a word a word by
the company it keeps� [4]. This principle posits that words with similar mean-
ings tend to appear in similar contexts. Word Embeddings (WE) are techniques
that map textual tokens, such as words, into a dense and low-dimensional vector
space, built from extensive unlabeled corpora, where each token is correlated
with other tokens in its context. Methods for generating this mapping include
neural networks, dimensionality reduction on the word co-occurrence matrix, and
probabilistic models. To capture nuanced semantic relationships and enhance the
overall contextual understanding of the texts in our corpus, a FastText [5] word
embedding model was employed as the foundational embedding matrix for our
Bidirectional LSTM sentiment classi�er. FastText, an extension of traditional
word embeddings algorithms (such as Word2Vec [6]), excels in representing sub-
word (�n-grams�) information, therefore it allows handling morphologically rich



Title Suppressed Due to Excessive Length 319

languages and capturing the meaning of out-of-vocabulary words, the latter be-
ing a fundamental feature of Twitter (X) conversations. Key hyper-parameters
are:

� Embedding space dimension. The vector space size to which the words of the
corpus are mapped;

� Window size. The width of the sliding window de�ning the amount of context
to consider;

� Iterations. How many times the weights of the neural network are updated
during training;

� Learning model. The approach used to train the neural network, either
CBOW (continuous bag-of-words) or Skip-gram.

Other factors a�ect the performance of a word embedding model, like the size of
the corpus, as bigger corpora tend to lead to better performance, and the quality
of the corpus, as noisy, fragmented and poorly curated texts generally produce
lower quality embedding spaces.

2.2 Long Short-Term Memory Networks

Our classi�cation model employs Long Short-Term Memory (LSTM) networks
[7], a type of Recurrent Neural Networks (RNN). LSTMs excel at processing
sequential data, making them highly e�ective for tasks that require understand-
ing temporal dependencies. When dealing with textual data, this translates to a
better understanding of longer contexts. In general, a LSTM memory cell com-
prises four integral components: an input gate, an output gate, a forget gate,
and a self-recurrent neuron (Fig. 1).

Fig. 1. Simpli�ed scheme of an LSTM cell.

These gates collectively manage the �ow of information within the memory
cell. The input gate controls whether incoming signals can modify the state of
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the memory cell, while the output gate regulates whether the memory cell can
in�uence other neighboring cells. Additionally, the forget gate has the capability
to decide whether to retain or discard information from the existing state. LSTM
layers consist of a series of interconnected memory cells, typically activated by
hyperbolic tangents, which control the information �ow through the system of
gates. These gates operate using sigmoid functions, de�ned as follows:

σ(x) =
1

1 + e−x
(1)

This function maps any real-valued number to a value between 0 and 1, where
0 signi�es a complete inhibition or blockage of information, while a value of 1
indicates unrestricted passage, allowing the gates to selectively open or close
based on the input data. In particular:

it = σ
(
wi[h(t−1), xt] + bi

)
(2)

ft = σ
(
wf [h(t−1), xt] + bf

)
(3)

of = σ
(
wo[h(t−1), xt] + bo

)
(4)

where it, ft, and ot represent the input, forget and output gates respectively, σ
represents the sigmoid function, wx is the weight for the respective gatex neu-
rons, h(t−1) is the output of the previous LSTM block, xt is the input of the
current LSTM block and bx represents the bias for the respective gatex.

In addition, LSTM networks make use of hyperbolic tangent activation func-
tions, de�ned as follows:

tanh(x) =
ex − e−x

ex + e−x
(5)

Similarly to the sigmoid function, the hyperbolic tangent function maps any
real value to a number between -1 and +1, but unlike the sigmoid function, it
centers the output around 0, allowing for both positive and negative activations.
This property ensures that information can �ow in both directions through the
network's gates and memory cells, allowing capturing both positive and negative
temporal dependencies in the data.
Speci�cally, the hyperbolic tangent function is employed in two key areas:

� Memory cell computation. The output of the forget gate, multiplied by the
previous cell state, and the candidate memory cell state (generated using
a tanh function to combine input and previous hidden state) are added
together, e�ectively controlling the information retained in the memory cell;

� Hidden state generation. The �nal step involves applying the tanh function
to the memory cell state modulated by the output gate. This generates the
�nal hidden state, which captures the relevant information from the current
in-put and previous states, ready to be passed onto the next LSTM block in
the sequence.
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The choice of an LSTM-based architecture for text classi�cation is motivated
by the inherently short nature of tweets. While LSTMs have been noted for
struggling with longer sequences, the issue is less pronounced in the context of
brief textual content. In contrast to more recent algorithms such as Transformers,
LSTMs still show some advantages in scenarios with limited labeled datasets.

2.3 Bidirectional LSTM Architecture

While traditional LSTM networks excel at analyzing input sequences in a for-
ward direction, they might miss important time dependencies present in later
data. This is particularly true with textual data, where later information is just
as important as earlier information in understanding context. That is where
Bidirectional LSTM (BiLSTM) models [8] come in handy. Our chosen BiLSTM
model incorporates this powerful architecture to leverage contextual information
from both the past and the future within the text.

The �rst stage involves embedding the input texts into numerical vectors us-
ing a pre-trained embedding matrix. This matrix encodes semantic relationships
between words, allowing the model to understand their meaning. These embed-
dings are then fed into two separate LSTM layers, processing the sequence in
both the forward and backward directions simultaneously. Each LSTM layer
consists of several memory cell with gates regulating information �ow. These
gates, governed by sigmoid and hyperbolic tangent functions, control what in-
formation is retained, forgotten, and ultimately passed onto the next cell. By
processing the text in both directions, BiLSTMs gain access to richer contextual
information, allowing for a more informed prediction about the overall sentiment
of a sentence. Our BiLSTM model employs two stacked BiLSTM layers, further
enriching its ability to extract complex features from the textual data. By stack-
ing layers, the model learns increasingly abstract representations of the input
at each level. Finally, a Global Max Pooling layer captures the most signi�cant
activation across the sequence, summarizing the learned information. This con-
densed representation is then fed into a single neuron with a sigmoid activation,
ultimately predicting the binary classi�cation outcome.

3 Training Settings

In this section, we analyze the structure of our training data and of the dif-
ferent train-ing scenarios for the BiLSTM neural network, with a focus on the
distinctive in�u-ence of Covid-related expressions.

3.1 Training Set Composition

The training set is made of four distinct labeled datasets, each focused on dif-
ferent features that contribute to the model's understanding. The datasets are
the following:

� Sentipolc. A widely used Italian labeled dataset for sentiment analysis [9];
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� Happy parents. Another Italian labeled dataset contributing several senti-
ment expressions related to parenting behavior and experiences [10];

� Feel-it. The only dataset that explicitly contains tweets related to the Covid
pandemic [11];

� Istat. A dataset annotated directly by the Italian National Institute of Statis-
tics.

The dataset labels are distributed as follows:

Table 1. Training Datasets

Dataset

Sentipolc Happy parents Feel-it Istat

Label pos neg pos neg pos neg pos neg

N 1914 3242 641 671 724 1299 363 374

Total
5156 1312 2023 737

9228

The neutral sentiment class, where present, was dropped to build a binary
classi�er.
In the case of unbalanced data, the �nal training set contains 9228 Tweets, while
in the case of balanced data (under-sampling), the �nal training set contains 7284
Tweets. The training sets that were the most a�ected by the under-sampling were
Sentipolc and Feel-it. The latter contained 157 Tweets related to the Covid-19
pan-demic before the under-sampling and 104 Tweets after.

3.2 Training Scenarios

The training scenarios are strategically designed to explore the impact of di�er-
ent training set compositions on sentiment predictions. There are two primary
categories: scenarios without �ne-tuning (scenario 1 and scenario 2 ) and sce-
narios with �ne-tuning (scenario 3 and scenario 4 ).

Table 2. Training Scenarios

Scenario Training Fine-tuning

Scenario 1 Sentipolc, Happy parents, Istat, Feel-it -

Scenario 2 Sentipolc, Happy parents, Istat -

Scenario 3 Sentipolc, Happy parents, Istat Feel-it

Scenario 4 Sentipolc, Happy parents Istat
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In detail (Table 2), scenario 1 incorporates all available datasets, providing
a general understanding of sentiment across various domains, including Covid-
related expressions. Scenario 2 omits the Feel-it dataset, focusing on general
sentiment patterns without considering Covid-related expressions. In scenario 3,
the �rst stage of the training process covers general sentiment patterns, while the
�ne-tuning stage speci�cally adapts the model to the nuances of Covid-related
sentiments. In scenario 4, the �rst stage focuses on general sentiments, while
the second stage �ne-tunes the model to the sentiment expressions captured by
the Istat dataset. It is important to note that the test set remains consistent
across all training scenarios, encompassing tweets from each training dataset.
The extraction process employs strati�cation to preserve the original proportions
of the datasets. In total, the test set constitutes 16% of the original training set.

3.3 Common Training Settings

The training process across all scenarios adheres to a set of consistent param-
eters. In particular, data balancing involves under-sampling to achieve equilib-
rium between positive and negative labels due to a signi�cant prevalence of
negative-labeled tweets. Models have been trained both with unbalanced and
balanced training sets for every scenario. The validation set constitutes 20%
of the scenario-speci�c training dataset and it is used to validate the training
process.

Embedding Model. A common FastText-based word embedding model is fed
to the BiLSTM network to ensure shared natural language understanding across
all scenarios. The training set-tings with which the embedding model is trained
are shown in Table 3.

Table 3. Embedding Model Speci�cations

Embedding Model

Algorithm Vector Size Window Min. Count SG Epochs

FastText 200 8 10 0 25

The vector size parameter represents the embedding space, i.e. the dimen-
sionality of the word vectors produced by the model. In this case, each word is
represented as a 200-dimensional array in the embedding space. The window pa-
rameter de�nes the maximum distance between the current and predicted word
within a sentence. If set to 8, the model considers 8 words to the left and 8
words to the right of the target word during training. The min. count parameter
refers to the threshold set for the minimum number of times a word needs to
occur in the corpus to be included in the vocabulary. If the sg parameter is set
to 0, a CBOW (continuous bag-of-words) approach is speci�ed where the model
predicts context words given a target word.
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BiLSTM Model. A BiLSTM network with a common architecture was imple-
mented across all training scenarios. The speci�cations for the model are shown
in Table 4.

Table 4. BiLSTM Model Speci�cations

BiLSTM

Layer 1 Cells Layer 2 Cells Dropout Rate Trainable Max. Length
64 64 0.5 True 280

Layer 1 cells and layer 2 cells denote the number of memory cells or units
in the �rst and second layers of the BiLSTM neural network. The dropout rate
is a regulariza-tion technique employed to prevent the model from over�tting
on the training set dropping out a fraction of inputs during training. The train-
able parameter indicates whether the embedding layer can be �ne-tuned during
the training process. If so, the embedding layer's weights are updated during
training, allowing the model to learn and adjust word representations.

Training Loop. Concerning the training loop, the NAdam optimizer is em-
ployed with a starting learning rate of 1e−3, incorporating dynamic learning
rate reduction on plateau to mitigate over�tting. The binary crossentropy loss
function is evalued to carry out the gradient descent procedure. A �xed batch

size of 32 is set for every training scenario. The model undergoes training for 15
epochs in both the �rst and second stages, when admissible.

Fine Tuning. In scenarios 3 and 4, the base model undergoes �ne-tuning on
the Feel-it and Istat datasets, respectively. The settings for this second step mir-
ror those of the initial training, with the exception that all layers of the model,
except the last one, are fro-zen. This precaution is taken to prevent the weights
of the model from being overly in�uenced by the dataset on which it undergoes
�ne-tuning. By freezing all layers, we aim to retain the knowledge captured dur-
ing the initial training while adapting the model to the speci�c characteristics
of each target dataset.

This results in eight distinct models, corresponding to the four scenarios in
both balanced and unbalanced training set con�gurations.

3.4 Corpus of Prediction

The sentiment prediction is carried out on a corpus of approximately 11.2 mil-
lion Tweets spanning from January 1, 2020 to December 31, 2020. Notably, the
word embedding model utilized for the BiLSTM network is trained on this same
corpus, ensuring alignment between the training and prediction phases. The ref-
erence period includes the burst of the Covid pandemic, we focus particularly
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on understanding the impact of including Covid-related texts in the training
process.

3.5 The Index

The predicted sentiment of each Tweet is a number between 0 and 1. If the
resulting prediction is higher than 0.5, the tweet is considered positive, if it is
lower than 0.5, it is considered negative. The daily index is built in the following
way:

It =
NPOS −NNEG

NPOS +NNEG
(6)

where NPOS is the number of tweets that have been classi�ed as positive for day
t, while NNEG is the number of tweets that have been classi�ed as negative.

4 Results

In this section we discuss aspects related to the model performance and the
trends of the predicted indices across the di�erent training scenarios.

4.1 Model Performance

The model's performance has been assessed using both accuracy and F1-scores,
providing robust measures that account for the unbalanced nature of the dataset.
The results for the di�erent scenarios refer to metrics computed on the test set
(common across all scenarios) and are shown in Table 5.

Table 5. Model Performance

Model Performance

One-step Two-step

Metric Training Set Scenario 1 Scenario 2 Scenario 3 Scenario 4

Accuracy
Balanced 0,80 0,80 0,82 0,76

Unbalanced 0,81 0,79 0,80 0,77

F1-score
Balanced 0,80 0,81 0,82 0,79

Unbalanced 0,76 0,74 0,75 0,74

Balanced datasets were employed to enhance the classi�er's performance, a
trend observed across all scenarios except for scenario 4 two-step, where accuracy
exhibits a slight decrease. However, the F1-score consistently improves. Notably,
the optimal model performance is achieved when trained on a balanced dataset
in scenario 3. In this case, the �rst step utilizes three general datasets (Sentipolc,
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Happy Parents, Istat), and the subsequent second step �ne-tunes the model using
the dataset that includes Covid-related expressions (Feel-it).
In terms of performance, there is a marginal decrease in all scenarios, whether
balanced or not, during the second step. The exception to this trend is the most
performant model, obtained in scenario 3 balanced.

4.2 Predictions

The indexes obtained using the predicted sentiment in the di�erent training
scenarios are depicted in Figure 2 and Figure 3. The grey area in both �gures
represents the �rst lockdown period in Italy, spanning from March 9, 2020 to
May 18, 2020. This period is of particular interest due to its signi�cant impact
on dynamics.

Fig. 2. Predictions � balanced vs unbalanced training sets for all the di�erent scenarios
(7-day moving average, left window)

In Figure 2, the 7-day moving averages (MA) for the four scenarios trained
with both balanced and unbalanced datasets are presented. Notably, scenario
4 exhibits the highest variation in the mean value between balanced and un-
balanced (0.33), while scenario 1 shows the lowest variation (0.05). Scenario 3
unbalanced attains the lowest mean value (-0.66), followed by scenario 1 unbal-
anced (0.65). However, the most substantial decline during the lockdown period
is observed in scenario 1 balanced (Figure 3).
The in�uence of Feel-it is most noticeable in balanced and one-step settings,
with the highest downward trend recorded in the �ne-tuning setting with the
unbalanced training set. In both balanced and unbalanced frameworks, scenarios
1 and 3, which include the Feel-it dataset in their training process, consistently
register the lowest values. These �ndings align with the correlation matrices.

The correlation matrices for the level of the 7-day moving average series and
the day-over-day variations of the 30-day moving average series are presented in
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Fig. 3. Predictions � Highlight of the di�erences in predictions between scenario 1 and
scenario 3, both with balanced and unbalanced training sets (30-day moving average,
left window)

Table 6. Correlation Matrix of Predictions (7-day moving average)

Correlation Matrix

Balanced Unbalanced

S1 S2 S3 S4 S1 S2 S3 S4

Balanced

S1 1 0,85 0,82 0,66 0,94 0,90 0,91 0,84

S2 1 0,90 0,76 0,89 0,92 0,87 0,91

S3 1 0,77 0,86 0,89 0,90 0,84

S4 1 0,64 0,70 0,67 0,75

Unbalanced

S1 1 0,93 0,92 0,86

S2 1 0,92 0,89

S3 1 0,88

S4 1
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Tables 6 and 7. Notably, the maximum correlations exhibit coherence between
both matrices. The highest correlation values are observed between scenario 1
balanced vs scenario 1 unbalanced (0.94 for 7-day MA, 0.91 for 30-day d-o-d
variation) and scenario 1 unbalanced vs scenario 2 unbalanced (0.93 for 7-day
MA, 0.91 for 30-day d-o-d variation).

Table 7. Correlation Matrix of the d-o-d variation of the 30-day moving average

Correlation Matrix

Balanced Unbalanced

S1 S2 S3 S4 S1 S2 S3 S4

Balanced

S1 1 0,85 0,82 0,75 0,91 0,88 0,83 0,79

S2 1 0,87 0,82 0,88 0,86 0,79 0,85

S3 1 0,76 0,83 0,79 0,87 0,80

S4 1 0,79 0,85 0,80 0,82

Unbalanced

S1 1 0,91 0,83 0,80

S2 1 0,84 0,83

S3 1 0,82

S4 1

The lowest correlations are recorded for scenario 4 balanced, particularly
against scenario 1 balanced (0.66 for 7-day MA, 0.75 for 30-day d-o-d varia-
tion). Speci�cally, in the case of the 7-day MA, the lowest correlation is against
scenario 1 balanced (0.66), while for the 30-day d-o-d variations, it is against
scenario 3 balanced. Notably, scenario 1 balanced shows the highest correlation
with scenario 1 unbalanced, followed by scenario 2 unbalanced.
In general, �ne-tuning the weights of the last layer appears not to produce a
signi�cant e�ect on the dynamics. For example, scenario 3 balanced, which is
associated to the highest F1-score, exhibits a high correlation with its unbal-
anced counterpart and scenario 2 balanced, with which it shares the �rst-step of
training.

Regarding the impact of balancing on dynamics, in the case in which we
incorporate Feel-it, results show that balancing bene�ts predictions. Conversely,
when Feel-it is not included, the unbalanced setting leads to more coherent
dynamics. This may stem from the fact that we analyze a period characterized
by general negativity. While Feel-it explicitly introduces Covid references, in the
other cases, the negativity is better learnt in the unbalanced setting.

5 Conclusion

In this paper we extensively analyzed the impact of balanced and unbalanced
datasets, as well as di�erent learning procedures, particularly focusing on the
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e�ects of �ne-tuning. When datasets do not largely di�er from the �rst to the
second step of training, a single-step approach is more advisable. While bal-
anced datasets generally yield higher accuracy, the observed e�ects on dynamics
are not clear enough to draw generalized conclusions. Additionally, we incorpo-
rated a recent labeled dataset (Feel-It) explicitly containing references related
to the 2020 pandemic, such as terms like �Covid-19� and �lockdown�. Notably,
the highest accuracy and the most consistent dynamics are recorded in learning
scenarios that include Feel-It. However, even scenarios that do not incorporate
Feel-It still exhibit noteworthy breakdowns during the �rst lockdown. This is
likely attributed to the nature of the re-trained embedding model, encompass-
ing the entirety of 2020 and thus Covid-related expressions. Consequently, the
model can infer the meaning of such expressions during sentiment classi�cation,
mitigating the lack of explicit references. Except for the lockdown period, dy-
namics among di�erent indices remain relatively consistent, up to a level shift.
As expected, when analyzing tens of millions of tweets and comparing them to
less than ten thousand labeled texts, fairly correlated dynamics are observed.

In this work, we highlighted the di�erent dynamics achieved by varying train-
ing settings of the networks, even though all networks showed comparable levels
of accuracy and F1-scores. Unlike most published works in the �eld, we aimed
to evaluate the consistency of the achieved dynamics, analyzing results through
our domain-based knowledge.

In conclusion, we recommend pre-training an embedding model on the corpus
to be predicted and use it as an input layer for the network. Additionally, we
advise incorporating more specialized labeled datasets to enhance the network's
nuanced semantic understanding of the domain of interest. For instance, as a
future improvement, we could draw a sample from the corpus of prediction and
label it. Moreover, as we gather larger labeled training sets, we plan to train more
advanced architectures, e.g. Encoder-only Transformers, in order to achieve more
accurate results.
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Abstract. Maritime data surveillance has significantly grown in the last decade, 

notably through technologies like AIS (Automatic Identification System). Pre-

dicting vessel positions is crucial for various maritime applications, with a focus 

on trajectory forecasting. This involves anticipating vessel direction and future 

locations, which is vital for tasks such as search and rescue, traffic management, 

and pollution monitoring. Despite the abundance of AIS data available, predict-

ing vessel paths remains challenging. AIS technologies, which use ship tran-

sponders, assist vessel traffic services (VTS) and serve as the foundation for tasks 

such as trajectory prediction and the classification of the arrival port given a 

route, namely ‘Port Classification’. AIS data includes essential vessel infor-

mation, such as latitude, longitude, speed, and identity, transmitted via VHF sig-

nals. Deep learning models are considered state-of-the-art for analyzing AIS data. 

This study focuses on implementing a ‘Port Classifier’, evaluating several mod-

els including Conv1D, MLP and LSTM on AIS trajectories labelled through heu-

ristic algorithms, and promising results are achieved, with Conv1D showing su-

periority in port classification tasks. Additionally, we conducted an Exploratory 

Data Analysis (EDA) to better understand the data. Our findings contribute to 

enhance maritime data analysis, and demonstrate potential applications for Offi-

cial Statistics. 

 

Keywords: AIS, Maritime Transport Statistics, Official Statistics, Machine 

Learning, Deep Learning, Artificial Intelligence 

1 Introduction  

In recent years, the surveillance of maritime data has gained significant traction. The 

increase in maritime activities over the past few decades has sparked considerable con-

cerns surrounding Maritime Surveillance (MS) and Maritime Situational Awareness 

(MSA). In this context, applications leveraging AIS (Automatic Identification System) 

data have become particularly relevant. 

 AIS is an automated tracking system that uses transponders on ships to support ves-

sel traffic services (VTS). AIS signals incorporate real-time vessel kinetic information 

[1], such as current latitude (LAT) and longitude (LON) coordinates, Speed Over 

Ground (SOG), Course Over Ground (COG), and IMO (International Maritime Organ-

ization) - a unique identifier for vessels - among other parameters. Transmitted through 
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VHF radio signals, AIS data plays a crucial role in navigation safety, maritime security, 

vessel traffic management, and commercial endeavors [2, 3]. 

 Most studies focus on predicting vessel trajectories. Anticipating the course of ships 

and estimating their approximate future locations, ranging from several hours to several 

tens of hours ahead, is crucial for various MS and MSA applications. These applications 

include search and rescue operations [4], traffic management [5], route planning [6], 

mitigating port congestion [7], and monitoring pollution levels [8]. Although the AIS 

provides a wealth of information, forecasting vessel paths using AIS data remains a 

challenging task [9]. Due to the complex nature and diverse patterns of motion data 

[10], modern machine learning and deep learning techniques gained popularity [11]. 

 The trajectory prediction task is complemented by emerging initiatives such as 

'Routes Missing Values Management' and 'Port Classification'. In this work, we focus 

on the 'Port Classification' task, hence we aim to assign an arrival port to a given route, 

i.e. a sequence of AIS signals. Port Classification is especially interesting for Official 

Statistical Purposes, where information about the vessel movements, connections be-

tween ports and the structure seaborn trade is crucial. So far, these type of analyses can 

be carried out with ad-hoc surveys conducted at National level, which have been very 

costly and time-consuming. 

 To achieve this goal, we define the following pipeline: we build a 'Heuristic Algo-

rithm' (HA) that automatically and deterministically assigns an arrival port to a route 

when certain conditions are met. Then, we train a selection of Deep Learning models 

on the data labelled by the HA with the aim of validating and expanding it, by labelling 

routes that do not meet the conditions for HA classification. The Deep Learning step is 

essential to account for spatial and long-term dependencies in the time-series of AIS 

signals. 

 In accordance to the literature, we carry out a model selection process, comparatively 

evaluating the performance of each model. In particular, we explore the use of a Multi-

Layer Perceptron (MLP), a Long Short-Term Memory (LSTM) network and a 1-Di-

mensional Convolutional (Conv1D) network. We initially treat AIS trajectories as 2-

dimensional images with 4 channels (LAT, LON, SOG, COG) and subsequently add 

two channels to the signal (departure port, H3 encoding index 81) to improve the accu-

racy of the results. 

 Results suggest that Conv1D outperforms LSTM, as the spatial correlations captured 

by the convolutional layer seem to be more effective than the capability of the recurrent 

neural networks of 'remembering' the previous states and inputs of the series. Moreover, 

Deep Learning algorithms obtain promising results on the test set, mitigating the over-

fitting issue observed with traditional machine learning models. 

 The innovation brought by this work relates to the fact that a small fraction of studies 

deal with Port Classification compared to Trajectory Prediction with AIS data. The Port 

 
1  H3 is a geospatial indexing system, developed by Uber Technologies [12],  

that approximates the GPS coordinates using a hexagonal tessellation of the earth's surface. 

The H3 index identifies the hexagon containing the ship’s coordinates, with the hexagon size 

depending on the resolution chosen (e.g. for the H3 encoding index 8 the considered resolution 

is 8) 
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Classification task has the advantage of not requiring the filling or imputation of miss-

ing AIS signals by immediately determining the port of arrival, making it highly per-

formant. At the same time, the task is challenging as it requires the models to infer a 

series of intermediate steps during the training stage. Despite the possibility of noise or 

non-stationarity, the models were able to extract valuable internal representations of 

data patterns and exhibit stable metrics. Our best model (Conv1D) achieved an F1-

score of 0.51 (0.84) on the test set when considering 4-channels signals and 0.67 (0.89 

accuracy) when considering the 6-channels signals, across a heavily unbalanced train-

ing set of 115 classes (ports). 

 These results demonstrate significant breakthroughs in Official Statistics, as 

shown in the Results section of this work. Furthermore, mitigating the overfitting effect 

in Deep Learning models (compared to Traditional Machine Learning approaches) sug-

gests potential for better generalization to other test sets once this statistical system 

enters the production stage. 

1.1 Related Works  

Lately, in the domain of maritime data analysis, the use of deep learning architectures 

gained significant traction, particularly in the forecasting and classification of vessel 

trajectories derived from AIS messages [13]. In summary, prior research extensively 

explored the applications of Multi-Layer Perceptron (MLPs), 1-Dimensional Convolu-

tional Neural Networks (Conv1Ds) and Long-Short Term Memories (LSTMs). These 

Deep Neural Networks (DNNs) in AIS messages trajectories forecasting and classifi-

cation, demonstrated their efficacy in modeling complex spatio-temporal patterns in-

herent in maritime data. Multilayer Perceptrons (MLPs) deeply explored AIS Data ap-

plications due to their capability to capture complex nonlinear relationships in data. 

Previous work [14] demonstrated the effectiveness of MLPs in predicting vessel trajec-

tories with high accuracy, attributing their success to the model's ability to learn intri-

cate patterns from historical AIS data. By leveraging MLPs, they showcased the ability 

to capture complex nonlinear relationships inherent in maritime data, enabling accurate 

trajectory forecasts over varying time intervals. The main downside of MLPs is the 

dense pattern of synaptic connections which represents an obstacle for the training al-

gorithms (stochastic gradient descent) to create the complex internal representations 

able to capture the complex spatial correlations within the vessels trajectories’ AIS 

messages. On the other hand, very complex spatial correlations can be extracted by 

Convolutional Neural Networks (CNNs). CNNs were applied to AIS trajectory analy-

sis, exploiting their spatial hierarchies to extract informative features from sequential 

data. For instance, [15] adopted 1D convolutions (Conv1D) to efficiently process AIS 

messages for trajectory classification tasks, achieving notable performance gains com-

pared to traditional methods. Their work highlighted the spatial hierarchies present in 

maritime data and illustrated how Conv1D can effectively extract informative features, 

leading to enhanced classification performance compared to conventional methods. In-

stead, LSTM networks suddenly emerged as a prominent choice for sequential data 

modeling, particularly in AIS trajectory forecasting. In another work, researchers 

demonstrated the superiority of LSTM networks in capturing the long-term temporal 
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dependencies within AIS messages [16], leading to accurate trajectory predictions even 

in dynamic maritime environments. Temporal dependencies play a crucial role in AIS 

trajectory forecasting and the previously mentioned study emphasized the importance 

of memory cells in LSTM networks, which enable the model to retain contextual infor-

mation over extended time periods, thereby improving trajectory forecasting accuracy.  

2 Methods  

A Multilayer Perceptron (MLP) is an artificial neural network (ANN) model, extending 

Rosenblatt's original Perceptron from 1950 [17]. Unlike the Perceptron, MLPs include 

hidden layers between input and output layers. Hidden layers process information, act-

ing as the network's computational engine. Designing an optimal MLP architecture in-

volves selecting layer count, neuron count, and connections, known as the architecture 

problem. Training an MLP involves adjusting synaptic weights to minimize errors (typ-

ically using backpropagation) comprising forward and backward propagation phases. 

On the other hand, Long Short-Term Memory (LSTM) [18] is a specialized type of 

Recurrent Neural Network (RNN) addressing long-term dependency challenges. Un-

like traditional RNNs, which struggle with long-term temporal dependencies, LSTMs 

retain information over extended durations [19]. LSTMs feature four interconnected 

layers, diverging from RNNs' single layer, allowing them to capture long-term depend-

encies crucial for various tasks. Finally, Convolutional Neural Networks (CNNs) [20], 

initially for computer vision, have shown strong performance in text classification. 

CNNs utilize convolution and pooling layers with 1D filters, recommended for text 

classification. These layers extract features independently of position, generating fea-

ture maps and reducing dimensionality. Unlike MLPs, CNNs do not necessarily require 

fully connected layers but may incorporate them for classification purposes. The 

Conv1D layer applies a convolution kernel along a single dimension yielding output 

tensors. 

3 Results 

3.1 Dataset 

The Deep Learning models were evaluated using records of ship voyages built from the 

global collection of live and historical AIS data supplied by the UN Global Platform 

(UNGP) [21]. The platform is based on Hadoop [22] and Spark [23] frameworks, where 

the first one was used to store data in a distributed file system and the second one was 

used for the data processing phase. Data is divided into small parts called 'blocks' and 

distributed among several nodes of a computer network. Each node (called 'worker') 

can process a part of the data. These frameworks are designed to work together with 

this data representation model, exploiting the parallelization of processing across dif-

ferent workers to speed up executions. In particular, Hadoop uses a data model called 

‘Hadoop Distributed File System’ (HDFS) [24], which is a distributed file system that 
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stores data in a user-specified size (256MB, in this paper). Blocks are also replicated 

across multiple nodes to ensure availability and fault tolerance. Spark maps these HDFS 

blocks into a proprietary data representation model called 'Resilient Distributed Dataset' 

(RDD) [25], allowing Spark workers to process data in parallel. According with this 

architecture, the used dataset contains regular observations of all kinds of ships, with a 

gross tonnage greater than 300 tons, traveling all around the world from December 1, 

2018. The time distance between two observations of the same ship is approximately 

10 minutes. We used AIS data from April 1, 2023, to April 30, 2023, for an amount of 

1,929,200 AIS observations. Besides AIS, we also used the Lloyd's Register of Ships 

[26], which is the largest maritime database in the world. It is updated monthly and 

contains comprehensive information about every ship. Finally, we incorporated a da-

taset of worldwide ports. For each port, the dataset specifies the center of gravity coor-

dinates of the port area, the port name, and its UNLocode (United Nations Code for 

Trade and Transport Location). 

3.2 Exploratory Data Analysis (EDA)  

This section discusses the quality of the dataset adopted in the study, with a focus on 

synthesizing information within a Big Data system. AIS signals from January 2023 to 

December 2023 were examined to assess the stability of the AIS system over time, by 

exploiting a different time interval from the trained model. To offer an objective over-

view of AIS signals, the analysis considers messages transmitted near Italian maritime 

territory, rather than exclusively those docking at Italian ports. The first aspect analyzed 

concerns the quantity of signals provided by the system, examining monthly trends in 

general information, including the number of rows, the number of distinct identifiers, 

and other auxiliary information relevant to the study. The main findings indicate ap-

proximately 17.7 million AIS messages per month, with a rising trend during the sum-

mer months and a consistent increase in the number of IMO identifiers, particularly 

towards the end of the study period. Additionally, the average speed is notably low, 

indicating a tendency towards stationary ships. Notably, there is a variety of ship types, 

each with distinct characteristics primarily determined by the length of their voyages. 

Figure 1 illustrates the distribution of AIS signals for the main types. 
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Fig. 1. Visualization of the AIS signals  

There are different types of ships, each with specific purposes and travel patterns. 

Pleasure craft ships account for 30% of the annual AIS messages, followed by cargo 

ships at 16%. Fishing vessels and sailing ships each account for 12%, while passenger 

and tanker ships represent 10% and 8%, respectively. This data highlights the 

differences in the types of ships and their respective industries. This analysis 

demonstrates the varied nature of ship categories in terms of their operations.  The study 

period shows the percentage distribution of each top category. Seasonal trends are 

evident, with the Passenger category being more prevalent in the summer months. 

Tanker ships exhibit a relatively consistent presence with slight peaks during 

midsummer and at the end of the year. Activity is generally reduced during the winter 

period, particularly in February, across all types. Subsequently, a signal throughput 

analysis of the messages is conducted to assess the behaviour of the AIS system and 

identify noteworthy aspects. The examined data is checked to verify whether two 

consecutive signals have a maximum latency of 10 minutes in an ideal system. It is 

important to note that the distance between signals is only measured if they differ by a 

maximum of one hour. This is because transmission systems can be deactivated and 

reactivated by ships at any time, such as during docking, which could invalidate the 

proposed analysis. Figure 2 presents a table that shows the percentage distribution of 

messages for the major types of ships related to our AIS messages, with a particular 

focus on certain months. 

 

 

Fig. 2. Chart illustrating the percentage distribution of messages for major types  

The annual distribution shows that message latency is primarily concentrated in the 

range of 6 to 12, with a significant bottleneck of messages taking over 20 minutes. This 

indicates that the system is generally stable. However, there may be occasional missing 
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messages due to various factors, such as antenna transmission issues or receiving 

system saturation [27]. 

 

3.3 Data Preparation 

After collecting AIS data, we generated a dataset of ships voyages' AIS observations, 

which we used to train the Deep Learning (DL) models. A voyage is defined by the 

ship (i.e., by the ship's IMO), the departure port and date, and the arrival port and date, 

as illustrated in Figure 3. 

 

 

Fig.3. Dataset of ships’ voyages 

A departure and an arrival are two consecutive visit of the same ship. We will refer to 

a visit of a ship in a port as ‘port call’. A port call in AIS data is a record where speed 

is zero and the position falls inside a port area. The ‘Heuristic Algorithm’ (HA) used to 

generate the dataset of voyages consists in the following steps: 

1. Load ports dataset (i.e. dataset of geographical coordinates of each port). 

2. Load Ships Register [26]. 

3. Select a time period. 

4. Filter AIS data, by the time period and by the ships that have visited an Italian 

port at least once. 

5. Join the filtered AIS data with the Ships Register, in order to get the gross 

tonnage and ship type attributes. 

6. Furthermore, filter AIS data by ships exceeding 300 tonnes (the ones we are 

interested in). 

7. Detect and manage significant outages in AIS data, as shown in the next Sec-

tion 3.4. 

8. Select port calls from AIS data, namely records where the speed is 0, to obtain 

a dataset of all the ships’ voyages (see Fig.3). 

9. Join this dataset with the AIS observations, collected at steps 4-6, to create a 

ships’ voyages dataset. Each record of the dataset contains:  

a. AIS observations, chronologically ordered, from departure date and 

position, to arrival date and position of a voyage. 

b. A label (the ‘class’), corresponding to the arrival port UNLocode. 

 

The resulting voyages’ dataset computed from the HA algorithm was used to train DL 

models. For this purpose, the dataset was divided into three distinct sets, i.e. training, 

validation and test set. Note that some voyages in the dataset may not have been labelled 

by the HA with the arrival port, due to the noise or lack of AIS signals, detected in step 

7 of the HA. These voyages were not included in the training set. Once the training 
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stage was completed, we firstly adopted the DL models to validate the labelling gener-

ated by the HA. On the other hand, the trained DL models were used to classify (by the 

arrival port UNLocode) the routes that could not be labelled by the HA. 

3.4 Detection of outages in AIS data 

As we stated within the Introduction section, the objective of this research is also de-

veloping a Deep Learning algorithm capable of predicting vessel docking events in 

scenarios where AIS signals are unavailable for extended durations (signal outages). A 

critical preliminary task is the identification of such signal outages, which needs ad-

hoc data preparation. We first sorted the data by the timestamps 𝑡𝑖 of recorded vessel 

positions, this allowed the introduction of three key variables for our analysis: 

• ∆𝑡𝑖 which is the time interval between two successive timestamps at the i-th 

recorded location of the vessel, which helps in identifying periods of signal 

absence. 

• ∆𝑠𝑖 which is the distance between the consecutive locations of the vessels at 

timestamps  𝑡𝑖 and 𝑡𝑖+1 (computed as the geodesic between the two points on 

the earth's surface, this measurement employs the Haversine formula to ap-

proximate the earth's curvature). 

• �̅�𝑖 =
∆𝑠𝑖

∆𝑡𝑖
  which is the computed average velocity of a vessel during ∆𝑡𝑖. 

We stressed the difference between the computed average speed �̅�𝑖 from the 'speed over 

ground' (sog) variable available in AIS data. The 'sog' represents the vessel's instanta-

neous speed at a specific timestamp, whereas our computed average speed offers insight 

into the vessel's pace over the entire interval ∆𝑡𝑖. In order to identify docking events 

during AIS signal outages, our algorithm implements a focused heuristic based on av-

erage speed computation. Initially, we isolate segments with extended time intervals 

(say ∆𝑡𝑖 > 60 ′), indicative of signal absence, during which we are blind to the ship 

activity. Within these segments, we pinpoint 'suspect' intervals that could potentially 

include docking events of which we are not aware, thereby filtering out intervals where 

docking is highly unlikely. Under typical conditions, a vessel's movement during the 

outage interval ∆𝑡𝑖 involves traversing the geodesic distance between two points, re-

sulting in a standard average velocity for that segment. However, if a vessel docks dur-

ing ∆𝑡𝑖, its actual journey will cover a significantly greater distance to dock and then 

return to the next recorded location. This means the straight-line distance ∆𝑠𝑖  would be 

notably less than the actual navigated distance, leading to a ratio 
∆𝑠𝑖

∆𝑡𝑖
  (average computed 

speed) lower than expected for normal travel. Our heuristic then flags a travel segment 

as a potential docking event if it meets two criteria: 

1. The time interval between signals ∆𝑡𝑖 exceeds a maximum threshold:  ∆𝑡𝑖 >
 ∆𝑡𝑀𝑎𝑥 

2. The average speed �̅�𝑖  is below a minimum threshold:  �̅�𝑖 < 𝑣𝑚𝑖𝑛  

The above-mentioned parameters depend on how stringent one wants to be in searching 

for possible docking events during outages; we use ∆𝑡𝑀𝑎𝑥 ≃ 60′, while the minimum 

velocity 𝑣𝑚𝑖𝑛  is chosen as a low percentile (around 25-th percentile) of the average 

velocity distribution, this is usually around 𝑣𝑚𝑖𝑛  ≃ 10 𝑘𝑛𝑜𝑡𝑠. It’s worth mentioning 
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that a flagged travel segment is not necessarily (or likely) a possible docking event, on 

the other hand a non-flagged travel segment (ship travelling at usual average velocity ) 

it’s highly unlikely to hide a docking (since it physically would not have time to do so). 

3.5 Pre-processing and Hyper-parameters 

We trained each model for 50 epochs, observing that extending training led to overfit-

ting. The dataset comprised 28,140 routes from April 2023, segmented into training, 

validation and test sets. Each set was labelled through Heuristic Algorithms and domain 

knowledge. The test set included 10% of the routes, randomly selected, while the vali-

dation set, extracted prior to training, constituted 20% of the remaining data. Both sets 

were processed in batches of 32. A fixed learning rate of 0.1 was maintained using a 

"reduce-on-plateau" strategy to avoid local minima. The best model from each epoch 

was retained for inference to assess metrics and perform final classifications, utilizing 

Stochastic Gradient Descent as the solver. 

Determining the optimal number of neurons in a ML model isn't straightforward, 

lacking clear engineering principles. For MLP models, halving neuron numbers per 

stage can reduce input dimensionality, while CNNs advise doubling kernel counts. 

Lengthy routes with over 3000 AIS signals were found to degrade model accuracy due 

to high dimensionality, so they were truncated to the last 300 messages. The signals 

were normalized in the [0, 1] interval, and sequences were zero-padded for uniform 

input sizes. Adding "Departure Port" and "H3 encoding index 8" as covariates to the 

original quadruple (LAT, LON, SOG, COG) improved performance, resulting in each 

AIS signal comprising six variables, totaling 1,800 inputs per model. Hence, The MLP 

comprises two hidden layers with 900 and 450 neurons respectively, followed by a 

softmax output layer for the 116 ports in the dataset. The Conv1D network features four 

"lenet-like" Conv1D layers: the first two with 32 kernels and the last two with 64 ker-

nels, all with a 3x3 receptive field. This network includes an additional MLP with a 

256-neuron flatten layer and a softmax output layer. The LSTM model includes one 

layer with 128 cells, optimized for fixed input sequence windows to prevent overfitting 

from sliding windows and overlapping sequences due to limited data. Each model ends 

with a softmax layer corresponding to the port classes and uses the RELU activation 

function throughout. Initial experiments showed poor F1 scores due to missing depar-

ture ports in the dataset, leading to their exclusion. This adjustment ensured that only 

routes with defined departure and arrival ports were used, significantly improving F1 

scores on the test set as detailed in the Deep Learning section. 

3.6 Deep Learning 

We conducted model selection to determine the best-performing model among MLP, 

Conv1D, and LSTM based on training and validation sets (Figure 4). The Conv1D Net-

work showed the highest accuracy on the validation set, possibly due to its ability to 

detect spatial correlations. However, LSTM demonstrated superior generalization with-

out overfitting, contrasting with MLP and Conv1D, which showed signs of overfitting 

in later epochs.  
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Fig. 4. Training Curves of Loss and Accuracy in MLP, Conv1D and LTSM models.   

The overfitting issue is especially pronounced with Conv1D, evident by significant di-

vergence in the curves around the 13th epoch. Despite this, we chose to preserve the 

best Conv1D model as a candidate for generating official maritime transport statistics. 

In contrast, the MLP lacks LSTM’s advantage of no overfitting and doesn’t match the 

performance of the best Conv1D model. 

Due to a heavy imbalance in the dataset, accuracy alone isn’t fit for evaluation; the 

F1-Score [28] is better suited, capturing model performance under strong imbalance. 

Our model selection, detailed in Table 1, considers metrics calculated on both training 

and test sets. Consequently, we proceeded with Conv1D for further analysis. Initially, 

with routes containing missing departure ports, the best model achieved an F1-Score of 

0.51, but after trimming these routes, the metric improved to 0.669, deemed satisfactory 

for robust modeling before application to unlabeled routes with gaps. Regarding the 

per-class scores, the 25th percentile F1-Score is 0.50 and the 75th percentile F1-Score is 

0.92, across 93 classes (ports) in the test set. 
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Table 1. Model performance 

Model / Metric Train Acc. Train F1 Test Acc. Test F1 
MLP 0.872 0.629 0.825 0.543 

Conv1D 0.976 0.901 0.893 0.669 
LSTM 0.762 0.394 0.729 0.392 

 

The hypothesis behind Conv1D’s superiority is that in AIS data, spatial correlations 

(well captured by CNNs) may outweigh long-term temporal dependencies (well cap-

tured by LSTM). We counted the ports classified by both Heuristics and DL across all 

data (training and test sets). 

Figure 5 illustrates the 10 highest positive and negative residuals comparing Heuristics 

and Deep Learning statistics. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Top 10 highest and lowest residuals between Heuristics and Deep Learning  

Only two ports, ITGOA and ITTPS, out of 106, exhibit notable deviations between 

Heuristics and Deep Learning outcomes, while the majority display minimal residuals. 

This underscores the accuracy of the heuristic-based labeling procedure, as evidenced 

by the relatively high F1-Score achieved by Deep Learning, indicating consistency in 

the training set. Figure 6 illustrates a set of correctly labeled ports. Additionally, in 

certain instances, as depicted in Figure 7, Deep Learning seems to refine the heuristic-

based labeling algorithm. 
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Fig. 6. True Port (internal green circle) and Predicted Port (external circle). The Predicted Port 

and the route have the same color.   

It's hypothesized that Deep Learning models, while not perfect replicas of the Training 

Set, can provide alternative outcomes by leveraging historical route data. This enables 

them to correct label predictions using external information beyond the Training Set. 

Residual analysis highlights significant disparities in a few ports between heuristic and 

Deep Learning predictions, likely due to Deep Learning's corrections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Depiction of the corrective power of Deep Learning with regards to the Training Set.    

Subsequently, we employed the pre-trained Deep Learning model to predict all un-

labeled routes identified during docking events. Figure 8A shows the model's profi-

ciency in labeling well-formed trajectories similar to those in the Training Set. How-

ever, Figures 8B and 8C demonstrate Deep Learning's key advantage in labeling tra-

jectories with significant time gaps, including those originating from docking event 
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identifications. By leveraging trajectory history, Deep Learning can determine the most 

probable port of arrival, improving estimates made by heuristic procedures. This sig-

nificantly enhances the accuracy of official statistics, especially in cases prone to de-

tection errors, such as port arrivals affected by AIS signal gaps. Figure 8D illustrates a 

more extreme scenario, where the last AIS signals are far from the coast, suggesting a 

different port than initially estimated. Nonetheless, the Deep Learning model can dis-

cern directional changes, reducing ambiguity and improving accuracy, even in chal-

lenging situations. 
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Fig. 8. Representation of all the routes with gaps that are correctly labelled by the best Deep 

Learning model.     
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4 Conclusions  

This study highlights the impact of Artificial Intelligence (AI), specifically Deep Learn-

ing, on Official Statistical production. Deep Learning can analyze complex data and 

uncover patterns that traditional methods may miss. It can also classify segments of 

paths and trajectories that cannot be labeled using traditional methods. Deep Learning 

can assign a port to trajectories even with missing segments, improving Official Statis-

tics estimation. It can also correct labels for well-formed routes. The study suggests 

training models over a full year to capture different situations and patterns. Future work 

will involve retraining the best model on labeled data from a full year and inferring 

labels for previous years. The latest data (from 2023) will be used as a labeling model 

for other years, since routes are not expected to change significantly. Additionally, in-

troducing random artificial gaps in training data (while preserving port labels) can help 

determine if models can adapt to their presence.  In the future, advanced deep learning 

models like Transformers might be tested for route labeling and reconstruction, as they 

have shown better performance in recent studies [29]. 
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Abstract. The Conditional Markov Chain Search (CMCS) is a frame-
work for automated design of metaheuristics for discrete combinatorial
optimisation problems. Given a set of algorithmic components such as
hill climbers and mutations, CMCS decides in which order to apply those
components. The decisions are dictated by the CMCS configuration that
can be learnt offline. CMCS does not have an acceptance criterion; any
moves are accepted by the framework. As a result, it is particularly good
in exploration but is not as good at exploitation. In this study, we explore
several extensions of the framework to improve its exploitation abilities.
To perform a computational study, we applied the framework to the
three-index assignment problem. The results of our experiments showed
that a two-stage CMCS is indeed superior to a single-stage CMCS.

Keywords: Conditional Markov Chain Search (CMCS) · three-index
assignment problem · axial index assignment problem · automated algo-
rithm design · automated meta-heuristic design · combinatorial optimi-
sation.

1 Introduction

The Conditional Markov Chain Search (CMCS) is a framework based on a
highly-configurable meta-heuristic suitable for automated design of combinato-
rial optimisation algorithms. We will say that a CMCS configuration is a specific
metaheuristic, as opposed to the generic CMCS framework. A CMCS configura-
tion comprises a set of components such as hill climbers and mutations, and a
control mechanism that decides in which order those components are applied. To
build a CMCS configuration, the user needs to provide a component pool, an ob-
jective function and a set of test instances. Using this information, a configurator
searches for a high-performance CMCS configuration.

A CMCS configuration is a single-point meta-heuristic based on multiple
components treated as black boxes. Each component is a subroutine that takes
a solution and modifies it according to the internal logic. Some components such
as hill climbers may aim at improving solutions whereas other components such
as mutations may perform random modifications; the framework generally treats
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them the same. The control mechanism of a CMCS configuration is described
by a set of numeric parameters thus enabling automated generation of CMCS
configurations; by tuning these parameters, one can find the ‘optimal’ control
mechanism [7].

A CMCS configuration performs as follows. It takes as an input the initial
solution (usually produced by some construction heuristic, e.g. random solution)
and then applies to it one of the components at each iteration. Any modification
by any component is always ‘accepted’, i.e. there is no backtracking. CMCS
records whether the component improved the solution or not. The choice of
the next component depends only on which component was used in the current
iteration and whether it improved the solution; thus the sequence of applied
components is a Markov chain. The control mechanism can be defined by two
transition matrices: one for the case when the solution was improved (M succ) and
another one for the case when the solution was not improved (M fail). Transitions
may be deterministic (if there is exactly one non-zero value in each row of each
matrix) or probabilistic. Since CMCS may worsen the solution, it keeps track of
the best solution found during the search and at the end returns that solution.
The termination criterion is based on the user-defined time budget [7].

An important aspect in an optimisation heuristic is how it combines ex-
ploration and exploitation. By exploration we mean the ability to find diverse
solutions and by exploitation we mean the ability to improve upon found solu-
tions. If a heuristic does not do enough exploration, it converges prematurely. If
it does not do enough exploitation, it misses good solutions even if it succeeds
in finding the regions where they are. By configuring CMCS, one can achieve an
optimal balance between exploration and exploitation, however this balance will
mainly be static, as CMCS is trained offline and has limited online adaptiveness
capabilities. In this paper, we study if adjusting the balance between exploration
and exploitation dynamically could benefit the performance of CMCS configu-
rations.

Specifically, we propose and study two extensions of CMCS that enable dy-
namic adjustment of the exploration/exploitation balance. Note that the original
CMCS does not have any mechanisms that would allow adaptation based on the
quality of the current solution. We explore two approaches to implement such
adaptation: one triggered by finding a new best-found-so-far solution (such so-
lutions, obviously, tend to be good), and another one based on the elapsed time,
as the solution quality tends to improve throughout the solution process.

As a case study, we use the Three-Index Assignment Problem (AP3). AP3
is the three-dimensional extension of the job Assignment Problem. While the
Assignment Problem is known to by polynomially solvable, AP3 is NP-hard.

Applications of AP3 include military troop assignment, minimising idle time
in a rolling mill, scheduling capital investments, satellite coverage and cost opti-
misation [12], production of printed circuit boards [2], and scheduling a teaching
practice [4].

The contributions of the paper are as follows. In all previous applications
of CMCS [9,7,11], only one strategy of exploration and exploitation has been
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applied. Hence, to address this gap, we propose two new strategies and compare
all three strategies in a computational study. To do so, we also design a CMCS
configurator and a pool of AP3 components.

The remainder of this paper is structured as follows. In Section 2, the different
CMCS strategies are detailed, followed by the CMCS configurator (Section 3),
discussion of AP3 and the component pool (Sections 4 and 5, respectively),
experimental evaluation (Section 6) and conclusions and future work (Section 7).

2 CMCS Exploitation Strategies

As we mentioned earlier, in each iteration, CMCS selects one component and
applies it to the current solution. The selection of the component depends on
exactly two inputs: what was the previously applied component and whether it
improved the solution. This means that the control mechanism cannot respond
to the absolute quality of the current solution; it only ‘knows’ if the solution was
improved or not in the last iteration. As a result, it cannot adjust its exploitation
strength when a particularly good solution is found. In other words, when it
finds a good solution, it may keep exploring without an attempt to improve this
solution.

In this section, we describe three versions of CMCS that address the ex-
ploitation in different ways. Strategy A stands for the original CMCS, strategy B
stands for a new extension that changes its behaviour when a new best-found-so-
far solution is obtained, to intensify exploitation of particularly good solutions.
Strategy C stands for a new extension that splits the time budget into two
phases, where the first phase is expected to be focused on exploration while the
second phase is focused on exploitation.

2.1 CMCSA: Strategy A

Strategy A is the core CMCS algorithm [7]. Its behaviour makes it very good
at exploration of the solution space but it may not fully exploit good solutions
before proceeding to further exploration.

The details of Strategy A are shown in Algorithm 1. It takes the following
as the input:

– Ordered set H of components, called component pool. Each component is
an algorithm that takes a solution and the instance data as parameters and
returns an updated solution.

– Transition matrices M succ and M fail of size |H| × |H|. Each row of each of
M succ and M fail adds up to 1, as these are transition probabilities.

– Instance data I. The instance data is only used for calculating the objective
function.

– Objective function f(S, I), where S is the solution and I is the instance
data.

– Time budget T .
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Algorithm 1: CMCSA(S, T ): Strategy A

1 S∗ ← S0; S ← S0; f
∗ ← f(S0, I); fprev ← f∗; h← 1;

2 while elapsed-time < T do
3 S ← Hh(S, I);
4 fcur ← f(S, I);
5 if fcur < fprev then
6 h← RouletteWheel(M succ

h,1 ,M succ
h,2 , . . . ,M succ

h,|H|);

7 if fcur < f∗ then
8 S∗ ← S;
9 f∗ ← fcur;

10 else

11 h← RouletteWheel(M fail
h,1 ,M

fail
h,2 , . . . ,M

fail
h,|H|);

12 fprev ← fcur;

13 return S∗;

The output of the algorithm is the best solution found during the search.
Here RouletteWheel(p1, p2, . . . , pn) is a function that returns integer i be-

tween 1 and n with probability pi.

2.2 CMCSB: Strategy B

Strategy B is an extension of Strategy A. In order to actively exploit good
solutions, it incorporates the variable neighbourhood descent (VND) algorithm
(a deterministic local search heuristic that explores a number of neighbourhood
structures [3]) that consists of a subset of the hill climbers from the component
pool. Given an ordered set of hill-climbers {HC1,HC2, . . . ,HCn}, VND applies
HC1 to the solution as long as it improves the solution. If HC1 fails to improve
the solution, HC2 is applied. If HC2 improves the solution, VND gets back to
HC1; otherwise it proceeds to HC3, etc. If all the hill climbers fail to improve
the solution, VND terminates. For details, see Algorithm 3.

In essence, Strategy B sacrifices some time to apply the VND algorithm to
the best-found-so-far solution each time the algorithm finds a new best-found-
so-far solution. As a result, best-found-so-far solutions are guaranteed to be local
minima with respect to the hill climbers included in the VND.

Typically, a metaheuristic improves the best-found-so-far solutions particu-
larly frequently at the beginning of its run. Applying VND each time is unnec-
essary; it is unlikely that a solution found at the early stages of the search will
be better than solutions found later. Thus, we do not apply VND until 0.5T .
For details, see Algorithm 2.

2.3 CMCSC: Strategy C

Strategy C splits the time budget into two phases, where the first phase is in-
tended mainly for exploration whereas the second phase is intended mainly for
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Algorithm 2: CMCSB: Strategy B

1 S∗ ← S0; S ← S0; f
∗ ← f(S0, I); fprev ← f∗; h← 1;

2 f∗
polished ←∞; f∗

best ←∞;
3 vnd-applied ← 0;
4 while elapsed-time < T do
5 S ← Hh(S, I);
6 fcur ← f(S, I);
7 if fcur < fprev then
8 h← RouletteWheel(M succ

h,1 ,M succ
h,2 , . . . ,M succ

h,|H|);

9 if fcur < f∗ then
10 S∗ ← S;
11 f∗ ← fcur;
12 vnd-applied ← 0;

13 else

14 h← RouletteWheel(M fail
h,1 ,M

fail
h,2 , . . . ,M

fail
h,|H|);

15 if elapsed-time ≥ 0.5T and vnd-applied = 0 then
16 S∗

polished ← VND(S∗);
17 f∗

polished ← f(S∗
polished);

18 if f∗
polished < f∗

best then
19 S∗

best ← S∗
polished;

20 vnd-applied ← 1;

21 fprev ← fcur;

22 return S∗
best;

exploitation. Both phases are implemented as CMCSA although the configura-
tions can be different; we call them ‘sub-configuration 1’ and ‘sub-configuration
2’, respectively. For details see Algorithm 4.

Please note that the roles of sub-configuration 1 and 2 are arbitrary; it is up to
the configurator to choose what sub-configurations work best within CMCSC. It
is our expectation that sub-configuration 1 is more likely to prioritise exploration
whereas sub-configuration 2 is more likely to prioritise exploitation.

3 CMCS Configurator

This section details the CMCS configurator, i.e. the algorithm that produces a
CMCS configuration given a training set of problem instances and a component
pool.

Each variation of CMCS requires a slightly different configurator but the
core algorithm is the same. The configurator for CMCSA performs as follows. It
takes as input a time budget T of a single CMCS run, a training set of problem
instances and a component pool. It also takes the number of components that
should be included in the configuration. It then generates all ‘meaningful’ subsets
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Algorithm 3: Variable Neighbourhood Descent: VND(S∗)

1 i← 1;
2 while elapsed-time < T do
3 Snew ← HCi(S∗, I);
4 fnew ← f(Snew, I);
5 if fnew < f∗ then
6 S∗ ← Snew;
7 f∗ ← fnew;
8 i← 1;

9 else
10 if i = n then
11 return S∗;

12 i← i+ 1;

13 return S∗;

Algorithm 4: CMCSC(S, T ): Strategy C

1 S∗ ← CMCSA(S0, 0.8T ) executed with configuration 1;

2 S∗ ← CMCSA(S∗, 0.2T ) executed with configuration 2;
3 return S∗;

of components of the given size. A subset is meaningful if it includes at least one
hill climber and at least one mutation.

Then, for each meaningful subset of components, the configurator searches
for a good combination of the transition matrices. For that, it employs a simple
population-based algorithm that performs as follows:

1. Produce a population of 50 configurations with the given set of components
and random deterministic transition matrices. A transition matrix is deter-
ministic if every row contains only one non-zero element.

2. Choose the best configuration in the population. If it is better than the best-
observed-so-far configuration observed so far, update the best-observed-so-
far configuration.

3. Produce a new population: 25 ‘children’ of the best configuration in the pre-
vious population and 25 ‘children’ of the best-observed-so-far configuration.
Each child configuration is obtained from the parent configuration by apply-
ing a mutation. The configuration mutations are described in Section 3.1.

4. Repeat steps 2–4 for as long as the training time budget allows.

5. Return the best-observed-so-far configuration.

Each evaluation of a configuration consists of running CMCS with the given
configuration on a set of benchmark instances. The average objective value is
used as the measure of the configuration quality.
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Once optimised configurations are produced for each meaningful subset of
components, each of them is tested on an evaluation benchmark set; the one
with the highest score is returned.

To configure CMCSB, we employ exactly the same algorithm as above. The
VND is predetermined by the user so only the set of components and the tran-
sition matrices need to be optimised.

A configuration of CMCSC consists of two independent CMCS sub-configu-
rations. Hence, we need to choose two meaningful subsets of components: one for
sub-configuration 1 and another one for sub-configuration 2. For each combina-
tion, we then optimise the two pairs of transition matrices. Specifically, we run
the above algorithm to optimise the transition matrices for sub-configuration 1
with sub-configuration 2 disabled. Then we fix the matrices in sub-configuration 1
and optimise sub-configuration 2 matrices. Then we fix sub-configuration 2 ma-
trices and optimise again sub-configuration 1 matrices. Once optimised matrices
are produced for each pair of meaningful subsets of components, each of them
is tested on an evaluation benchmark set and the one with the highest score is
returned.

3.1 Configuration mutations

To produce a ‘child’ configuration from a ‘parent’ configuration, the algorithm
selects two mutation operators and then applies the first one to M succ and the
second one to M fail. The mutation operators are chosen uniformly at random
from a set of available operators, and the choices for the two matrices are com-
pletely independent.

Below we describe the configuration matrix mutation operators.

Swap Rows. This mutation uniformly at random chooses two rows of the matrix
and swaps them.

Shuffle Row. This mutation uniformly at random chooses a row in the matrix
and a number n, 0 ≤ n ≤ |H|. It proceeds by making n swaps between randomly
chosen elements in the chosen row.

Minimum change. This mutation uniformly at random chooses a row and two
elements in that row. It then increments the value of the first element and decre-
ments the value of the second element. If the values cannot be increased/decreased,
no changes are made.

Ruin and Recreate. This mutation produces a new deterministic random matrix.
Specifically, it assigns 1 to a randomly selected element in each row and 0 to the
rest of the elements.



354 Sahil Patel and Daniel Karapetyan

Void. This mutation does not make any changes to the matrix. It was introduced
to allow changes that affect only one matrix.

In this research, we discretised the elements of the transition matrices. Each
element could only take values 0, 1/|H|, 2/|H|, . . . , 1. Each row needs to add
up to 1. This restriction is upheld by the random generation and optimisation
algorithms developed for these matrices. Due to time constraints, the use of
packages for parameter optimisation such as irace [10] could not be explored,
and thus no evaluation of the effectiveness of the developed matrix optimisation
algorithm has been done.

4 Case study: The three-index assignment problem
(AP3)

The three-index assignment problem (AP3) was first mentioned in [12]. It is an
NP-hard combinatorial optimisation problem with many applications.

It is described in [5] as follows: “Given n ∈ N, three sets I = J = K =
{1, . . . , n}, and associated costs c(i, j, k) ∈ R for all ordered triples (i, j, k) ∈
I × J ×K. A feasible solution for the AP3 is a set of n triples, such that each
pair of triples (i1, j1, k1), (i2, j2, k2) has different entries in every component, i.e.,
i1 ̸= i2, j1 ̸= j2, and k1 ̸= k2. The aim of the AP3 is to find a feasible solution
S with minimal costs

∑
(i,j,k)∈S c(i, j, k).”

We used three families of AP3 instances for training, validation and testing
of each CMCS strategy, all sourced from [8]:

– Random instances: each cost c(i, j, k) is assigned a uniformly distributed
random weight from {1, 2, . . . , 100}.

– Clique instances: at first, produce a complete tri-partite graph with par-
tites I, J and K and random edge weights in {1, 2, . . . , 100}. Then c(i, j, k)
is the sum of the weights of the edges (i, j), (j, k) and (i, k).

– Square Root instances: at first, produce a complete tri-partite graph
with partites I, J and K and random edge weights in {1, 2, . . . , 100}. Then
c(i, j, k) is the square root of the sum of squares of the weights of the edges
(i, j), (j, k) and (i, k).

The training dataset consisted of 12 newly generated instances: 4 instances
of size 40 of each type. All 12 runs were executed in parallel to utilise 12 logical
cores of the machine. The validation dataset consisted of 90 newly generated
instances: 10 instances of each type and size (40, 70 or 100).

The test dataset was used to compare configured algorithms and is the same
as that of [8] and can be found at http://www.cs.nott.ac.uk/~pszdk/?page=
publications&key=Karapetyan2011b. It includes 10 instances of each size (40,
70, and 100) and instance type (Random, Clique, and Square Root).
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4.1 Data structures

This section details the data structures used to hold the information of the
problem instances and solutions.

The cost function c(i, j, k) is represented by a three-dimensional integer array
of size n× n× n.

A solution is represented by an array of size n of tuples of size 2; the index of
the tuple represents i, whereas the values in the tuple are j and k. At all times,
the solution is maintained feasible, i.e. j1 ̸= j2 and k1 ̸= k2 for every pair of
tuples (j1, k1), (j2, k2).

While we store solutions as arrays of 2-tuples, we will represent them as sets
of 3-tuples in the remainder of the paper.

5 AP3 components

This section describes the components that make up the component pool used
as input to the CMCS configurator. These components are algorithms that ma-
nipulate an AP3 solution. Some of them were sourced from the AP3 and CMCS
literature, while others are newly designed.

5.1 Neighbourhoods

To describe the AP3 mutations and hill climbers, it is convenient to first intro-
duce a few neighbourhoods.

Swap: the neighbourhood includes all the solutions that can be obtained from
S by selecting (i1, j1, k1) ̸= (i2, j2, k2) ∈ S and swapping two values: i1 and i2,
or j1 and j2, or k1 and k2.

Shuffle: the neighbourhood includes all the solutions that can be obtained from
S by selecting (i1, j1, k1) ̸= (i2, j2, k2) ̸= (i3, j3, k3) ∈ S and shuffling i1, i2 and
i3, or j1, j2 and j3, or k1, k2 and k3.

Hungarian: the neighbourhood includes all the solutions that can be obtained by
applying a permutation to the values in one of the three dimensions. For example,
given a solution (i1, j1, k1), (i2, j2, k2), . . . , (in, jn, kn), a permutation π applied
to the first dimension will produce a solution (π(i1), j1, k1), (π(i2), j2, k2), . . . ,
(π(in), jn, kn).

5.2 Mutations

Here we discuss AP3 mutations, i.e., components that make random changes to
the solution, usually applied to escape a local minimum by worsening its quality.

Random Swap: randomly selects a solution from the Swap neighbourhood [9].



356 Sahil Patel and Daniel Karapetyan

Shuffle Three: new mutation that randomly selects a solution from the Shuffle
neighbourhood.

Worst Swap: new mutation that selects the worst solution from the Swap neigh-
bourhood, or returns the original solution if the current solution is a worst one
in the Swap neighbourhood.

First Worsen: is a new mutation that is similar to Worst Swap except that it
accepts the first worsening move.

Observe that Random Swap and Shuffle Three mutations are standard stochas-
tic mutations whereas Worst Swap and First Worsen systematically explore a
neighbourhood and choose the worst or first worsening move, respectively.

5.3 Hill Climbers

The following components are AP3 hill climbers, i.e., components that attempt
to improve the solution.

First Swap: is a new hill climber that explores the Swap neighbourhood and
returns the first improving solution, or returns the original solution if no better
solution is found.

Best Swap: explores the entire Swap neighbourhood and returns the best solution
in it [9].

Hungarian(d): explores the Hungarian neighbourhood for dimension d and re-
turns the best solution in it. Note that the exploration can be reduced to the As-
signment Problem and solved in polynomial time by the Hungarian method [6].
Also note that the size of the neighbourhood is exponential. Thus, the Hungarian(d)
hill climber is a so-called very large neighbourhood search method. We used the
implementation of the Hungarian method from [1].

Min-Dimension Hungarian: explores the Hungarian neighbourhood for all three
dimensions and returns the best solution found [6].

All-Dimension Hungarian: applies Hungarian(1), then Hungarian(2), then Hun-
garian(3), and then repeats this process until no further improvements can be
found [6].

Random Dimension Hungarian: a new hill climber that chooses the value of
d ∈ {1, 2, 3} randomly and applies Hungarian(d).
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Table 1: Generated configurations.

Strategy |H| # component sets Generation time, min

A 2 12 48
A 3 54 216
B 2 12 48
B 3 54 216
C 2 132 792
C 3 2 862 17 172

6 Experimental Evaluation

In this section, we compare the three exploitation strategies on our case study
problem, AP3. Note that our aim is not to obtain a state-of-the-art algorithm
for a specific optimisation problem; indeed, the performance of CMCS greatly
depends on the component library. Our aim is to test whether some variation of
CMCS has the potential to deliver better performance compared to the standard
CMCS.

The algorithms for this study were implemented in Java and executed on
Acer Predator Triton (6 cores and 12 logical processors) with an Intel Core
i7-10750H 2.6GHz processor with 16 GB RAM under Windows 11. At most
six experiments were run in parallel during evaluation (one per physical core).
CMCS and components, however, did not use concurrency.

6.1 CMCS generation parameters

The time budget allocated for solving an instance while training was set to
1000 ms. According to our experiments, this time was sufficient to model the
long-term behaviour of the CMCS configurations. The time allocated for opti-
mising the transition matrices of each CMCS configuration was 4 minutes for
Strategies A and B and 2 minutes for each training stage of Strategy C.

Table 1 shows the list of configurations that we generated in this study. One
can see that the generation of Stategy C configurations is significantly more
expensive compared to Strategies A and B. Also, the number of configuration
components has a great effect on the generation time. Nevertheless, the gener-
ation of a configuration in most of the experiments took no more than a few
hours which is well within the time budget for most of the applications and
significantly faster than the standard human-based design process.

6.2 Evaluation results

The performance of the obtained configurations is compared in Figure 1. The
solid lines correspond to the 2-component configurations whereas the dashed
lines correspond to the 3-component configurations.
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Fig. 1: Evaluation of the generated configurations. The graph shows how the so-
lution error changes throughout the run of CMCS. The solution error is averaged
across all the instances in the test set.

Among the two-component configurations, Strategy C is a clear winner for
every time budget. Strategy B performs similarly to Strategy A.

As expected, moving from 2-component to 3-component configuration im-
proved the solution quality for each strategy. Otherwise, the results are similar
for the 3-component configurations: Strategy C is a clear winner while Strate-
gies A and B perform similarly.

The similarity in performance of Strategies A and B most likely indicates a
bad choice of the VND stage. Indeed, our configuration method does not optimise
the selection and the sequence of components in VND. Possibly, the algorithm
spends too much or too little time on the VND phase.

Nevertheless, the success of Strategy C proves that CMCS benefits from the
addition of an exploitation stage. This is despite the fact that the generation time
for each sub-configuration in Strategy C was twice smaller than the training time
of configurations in Strategies A and B.

Figure 2 shows the 3-component Strategy C configuration generated by our
method. Both sub-configurations have the same component subsets but the tran-
sitions are different: sub-configuration 1 uses the mutation more often, which
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matches our expectations that it would prioritise exploration. However, there
are a few signs that the configuration generation process is not sufficiently ro-
bust. For example, sub-configuration 1 includes a transition from All-Dimension
Hungarian to Random-Dimension Hungarian even though All-Dimension Hun-
garian is guaranteed to find a local minimum in the Hungarian neighbourhood,
hence making a subsequent application of the Random-Dimension Hungarian
hill-climber useless. A better configuration optimisation process would eliminate
such a transition.

Random-
Dimension
Hungarian

First
Worsen

All-
Dimension
Hungarian

(a) Sub-configuration 1

Random-
Dimension
Hungarian

First
Worsen

All-
Dimension
Hungarian

(b) Sub-configuration 2

Fig. 2: Generated 3-component Strategy C configuration (the best configuration
found in this study). The blue arcs correspond to transitions following improve-
ment of the solution, while the red arcs correspond to the transitions following
the solution not being improved). The thickness of each arc is proportionate to
the frequency of the corresponding transition.

7 Conclusions

In this paper, we studied several approaches to intensify exploitation in CMCS.
Specifically, we designed two new CMCS strategies (Strategies B and C) and
compared them to the original strategy (Strategy A). Our experiments confirm
that CMCS benefits from an exploitation mechanism; Strategy C has clearly
outperformed Strategy A. (Strategy B demonstrated performance similar to that
of Strategy A – possibly indicating some ineffective design choices.) On the other
hand, generation of a Strategy C configuration is computationally expensive
compared to Strategies A and B.
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In future, we would like to improve the generation algorithms to study the
performance of larger Strategy C configurations and compete with the more
powerful AP3 metaheuristics from the literature. We would also like to test our
new CMCS strategies on other combinatorial optimisation problems to confirm
our findings and assess the effects of various parameters introduced in Strate-
gies B and C: the ordering of components within VND in Strategy B, the time
allocated to sub-configuration 1 in Strategy C, etc.
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The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

11. Nalivajevs, O., Karapetyan, D.: Conditional Markov Chain Search for the gener-
alised travelling salesman problem for warehouse order picking. 2019 11th Com-
puter Science and Electronic Engineering (CEEC) (2019)

12. Pierskalla, W.P.: Letter to the editor—the multidimensional assignment problem.
Operations Research 16(2), 422–431 (1968)



Multi-objective Stochastic Optimization with AI

Predictions on Management of Battery Energy

Storage Systems

Behzad Pirouz and Francesca Guerriero

Department of Mechanical, Energy and Management Engineering, University of
Calabria, Rende, Italy,

behzad.pirouz@unical.it & francesca.guerriero@unical.it

Abstract. Stochastic multi-objective optimization problems have broad
applications due to various uncertainties in real-world problems. Despite
the signi�cant opportunities renewable energies create, the high uncer-
tainty of wind speed and solar radiation is challenging for energy produc-
tion units. These uncertainty e�ects can be investigated through stochas-
tic multi-objective optimization programming [(see [1] and [2])]. On the
other hand, due to the uncertainty in the output power of systems based
on renewable energy, energy storage capacity is needed to increase the
reliability of the service. Multi-objective stochastic optimization models
have been proposed to reduce this uncertainty and storage capacity and
determine the optimal timing of charging and discharging [(see [3] and
[4])]. Arti�cial Intelligence (AI) techniques can signi�cantly increase the
accuracy of energy production forecasting using historical data, espe-
cially by training related data such as energy production data, weather
patterns, and other relevant variables. Also, these techniques can predict
sudden �uctuations in energy consumption demand caused by unforeseen
conditions or events [5]. This study discusses a multi-objective stochas-
tic optimization model for managing battery energy storage systems that
can handle the uncertainties of renewable energies. We have also used AI
techniques to predict data related to energy consumption and energy
production from renewable resources in our model.

Keywords: Multi-objective Stochastic Optimization · Renewable En-
ergy · Arti�cial Intelligence · Prediction Techniques · Battery Energy
Storage.
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Abstract. Unconstrained optimization problems are typically solved
using iterative methods, which often depend on line search techniques to
determine optimal step lengths in each iteration. This paper introduces
a novel line search approach. Traditional line search methods, aimed at
determining optimal step lengths, often discard valuable data from the
search process and focus on re�ning step length intervals. This paper pro-
poses a more e�cient method using Bayesian optimization, which utilizes
all available data points, i.e., function values and gradients, to guide the
search towards a potential global minimum. This new approach more ef-
fectively explores the search space, leading to better solution quality. It is
also easy to implement and integrate into existing frameworks. Tested on
the challenging CUTEst test set, it demonstrates superior performance
compared to existing state-of-the-art methods, solving more problems to
optimality with equivalent resource usage.

Keywords: Nonlinear Optimization · Line Search · Regression · Uncer-
tainty Quanti�cation · Bayesian Optimization.

1 Introduction

Optimization plays a central role in solving many real-world problems, from engi-
neering and operations research to training machine learning models [3,4,12]. The
selection of parameters and strategies signi�cantly in�uences the e�ectiveness of
algorithms designed to tackle such optimization problems. A crucial aspect of
these algorithms, which are often iterative methods, is the identi�cation of ap-
propriate step lengths, a process known as line search, which is fundamental to
the e�ciency of the optimization algorithm.

Over the years, many line search methods have been proposed, each to ensure
a step length that facilitates considerable progress in each iteration. Often, these
methods try to satisfy the strong Wolfe conditions, ensuring a su�cient decrease
in the function value and a reduction in the directional derivative. This ensures
that the algorithm converges to a point close to a local minimum of the function
along the search ray.

Traditionally, line search methods achieve this by maintaining and itera-
tively re�ning an interval with upper and lower bounds for the step length. This
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'zooming-in' process is designed to pinpoint a suitable step length that guar-
antees su�cient progress. However, in this process, only the upper and lower
bounds are kept and updated, and the information, i.e., function value and gra-
dient information from all other query points visited during this line search,
is discarded. Also, other regions of the line search interval might become more
interesting, but they are never considered.

This paper addresses this shortfall. We propose a novel approach based on
Bayesian optimization that harnesses all available information � the function
value and gradient at all points queried so far � to identify a potential global
minimum of the function along the line search ray. Bayesian optimization pro-
vides a principled framework for e�ciently exploring the search space by con-
structing a probabilistic model of the objective function. By iteratively re�ning
this model based on observed function values, Bayesian optimization guides the
search toward promising regions, thus facilitating faster convergence and im-
proved solution quality.

Our approach is simple, lightweight, and can be seamlessly implemented with
a few lines of Python code, making it accessible and easily integrated into existing
frameworks. We test our approach on the CUTEst test set [5] that contains a
number of challenging unconstrained optimization problems. On these problems,
our method outperforms other state-of-the-art approaches. Speci�cally, it enables
a solver to solve more problems to optimality, while using an equivalent number
of function evaluations and iterations.

2 Related Work

Many line search methods have been proposed. The seminal work by Armijo [1]
introduced the Armijo rule, one of the �rst inexact line search methods. Build-
ing on this, Wolfe [16] formulated the weak and strong Wolfe conditions, cru-
cial for balancing computational e�ciency with su�cient descent and curvature
criteria. Barzilai and Borwein [2] proposed a line search approach using gradi-
ent information, which proved e�ective in large-scale optimization. The work of
Moré and Thuente [10]presented a line search method based on cubic interpola-
tion, improving accuracy and e�ciency in various applications. It is used in the
quasi-Newton solver L-BFGS-B [18] which is also part of the Scipy library [13].
Additionally, Hager and Zhang [6] introduced an approach to re�ne step size es-
timation, enhancing performance in nonlinear optimization problems. Wächter
and Biegler [14] introduced a �lter line search strategy for primal-dual interior-
point methods for large-scale nonlinear problems where traditional line search
methods may struggle. It is part of the Ipopt solver [15], which is especially e�-
cient in handling complex and large-scale optimization problems. All these line
search methods have in common that they narrow down an interval containing
a good step length that ensures adequate progress. Only the upper and lower
bounds of this interval are maintained and updated, while the data, speci�cally
function value and gradient information from other points assessed in the line
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search, is disregarded. Additionally, other potentially relevant areas within the
line search interval are not explored.

On the other hand, Bayesian optimization has emerged as a prominent method
in global optimization, particularly for optimizing expensive-to-evaluate func-
tions. The pioneering work by Mo£kus [9] laid the foundation for this technique in
the one-dimensional case, focusing on e�ciency in the face of limited evaluation
opportunities. The integration of Gaussian processes in Bayesian optimization,
as explored by Rasmussen and Williams [11], provided a robust framework for
modeling the objective function and quantifying uncertainty. Usually, Bayesian
optimization models use only function values and not gradient information. An
approach that also integrated gradient information into Gaussian processes in
the context of Bayesian optimization is described in [17]. However, their algo-
rithm is rather involved, and no code is provided. All these works did not consider
line search as an application for Bayesian optimization. Here, we present a line
search approach that uses Bayesian optimization and that is easy to implement.

3 Line Search Method

Let f : Rn → R be a continuously di�erentiable function and bounded from
below. Suppose we want to solve the unconstrained optimization problem

min f(x) (1)

Iterative methods usually proceed as follows. Given a starting point x0 ∈ Rn,
in each iteration the current iterate xk is updated by

xk+1 = xk + αkpk,

where αk is the step length and pk is a descent direction, i.e., a direction in which
the function f decreases. Mathematically, it can expressed as p⊤k ∇f(xk) < 0. An
(approximate) line search method tries to �nd a good estimate of the step length
parameter αk such that su�cient progress is made in the current iteration. In
our approach, we use the strong Wolfe conditions to ensure su�cient progress,
i.e., the �nal αk needs to satisfy

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
⊤pk

|∇f(xk + αkpk)
⊤pk| ≤ c2|∇f(xk)

⊤pk|,

where 0 < c1 < c2 < 1 are two positive constants. The �rst inequality ensures a
su�cient decrease in function value and the second ensures a point that is close
to a stationary point along the search ray. Such a step length can be found by
the following optimization problem

min
αk≥0

f(xk + αkpk), (2)

i.e., the global minimizer along the search direction satis�es the strong Wolfe
conditions. Usually, we do not know the structure of function f but only have
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access to an oracle that computes function value and gradients for a given query
point. Hence, �nding an approximate solution to Problem (2) can be done using
Bayesian optimization. For this, we create a model of the one-dimensional func-
tion along the search ray as follows: We approximate the true function by a cubic
spline interpolation and additionally add an uncertainty estimate that depends
on the distance to the closest query point and follows a Gaussian distribution.
See Fig. 1 for an illustration.
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Fig. 1: The �gures show three iterations of our proposed line search method. The
blue line is the original function, the dashed red line is the cubic interpolation,
and the dashed green line is the uncertainty. The x-axis shows the step length,
while the y-axis shows the function value.

Suppose that in the current iteration we have already queried the function
for a number of query points. There always exists exactly one solution for a
cubic polynomial interpolating between two consecutive query points such that
the polynomial matches function values and directional gradients in the given
points. The uncertainty estimate for a given point follows a Gaussian distribution
that is scaled with the function value of the corresponding cubic polynomial. In
each iteration, the minimum of this Bayesian model, i.e., the spline interpolation
minus the uncertainty estimate is computed and the result is the next query
point. This process is repeated until a step length is found that satis�es the
strong Wolfe conditions. In the practical implementation, an upper bound on
the number of query points is �xed to account for numerical instabilities and
round-o� errors. This is common practice in line search methods.

Let us compare standard line searches with our new line search method. Stan-
dard line searches typically concentrate on a speci�c interval containing a point
that meets the Strong Wolfe conditions, e�ectively narrowing their focus. This
approach, however, only uses the information, i.e., function value and gradient,
available from the two query points that constitute the upper and lower bounds
of the interval. All the information from the other query points is discarded.
Consequently, there is a risk of missing a more optimal step length. This limi-
tation is evident when examining Fig. 2. Here, our method is shown to identify
a step length that yields a signi�cantly better function value compared to the
Moré-Thuente line search.
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(e) Fourth iteration.

Fig. 2: The �gure compares our line search with the Moré-Thuente line search.
In Sub�gure 2a, orange points indicate our method's query steps, while purple
points indicate points tried by the Moré-Thuente line search. Dashed circles in-
dicate the �nal step size of the respective method.It can be seen that our method
obtains a step length with a considerably better function value. Sub�gures 2b- 2e
depict four iterations of our method. The blue line is the original function, the
dashed red line is the cubic interpolation, and the dashed green line is the spline
plus uncertainty.
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4 Experiments

To assess the e�ectiveness of our proposed line search, we integrated it into the
GENO solver [7,8], which originally employs a quasi-Newton method equipped
with the Moré-Thuente line search [10]. We also compare against other state-
of-the-art methods, including L-BFGS-B, which also utilizes the Moré-Thuente
line search, and Ipopt, which employs a �lter line search [14,15]. We ran all
solvers on the unconstrained problems from the CUTEst test set [5], a widely
recognized benchmark featuring large-scale and numerically challenging prob-
lems. We focus primarily on large-scale problems common in machine learning
applications, where computing the Hessian is impractical or infeasible. Conse-
quently, all solvers could access function values and gradients but not Hessians.

We consider two criteria to evaluate convergence: the relative error in function
value and the relative gradient norm. Convergence in function value is de�ned
as the relative error to the optimum:

fsolver − fopt
1 + |fopt|

< 10−4. (3)

Convergence in gradient is de�ned as the in�nity norm of the gradient relative
to the function value:

∥g∥∞
1 + |fsolver|

< 10−6. (4)

We declare convergence if either of these criteria is satis�ed.
The experiment was conducted on 285 out of the 289 unconstrained CUTEst

problems. Four problems were discarded because their optimum was unbounded.
Each method was executed on each problem until convergence, with a cuto�
time of 10 minutes. Convergence was determined based on the relative error in
function value or the in�nity norm of the gradient relative to the function value.

The results are summarized in Table 1, which indicates the number of prob-
lems each method solved. As can be seen in Table 1, our proposed line search
outperforms other state-of-the-art line search methods. Speci�cally, GENO com-
bined with our new proposed method can solve 12 problems more than L-BFGS-
B with the Moré-Thuente line search, the best competing approach.

Since L-BFGS-B outperformed Ipopt and GENO Moré-Thuente, we con-
ducted a detailed comparison primarily with L-BFGS-B. Out of the 230 problems
on which both GENO and L-BFGS-B converged, GENO needed more function
evaluations on 84 and fewer on 146 of these problems. In order to compare the
number of function evaluations for one problem needed by the di�erent solvers,
we use the following formula:

nL-BFGS-B − nGENO
nGENO

(5)

where n denotes the number of function evaluations performed by each solver
until one of the convergence criteria was met. The distribution of relative itera-
tion counts between GENO and L-BFGS-B is depicted in Figure 3. This �gure
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Table 1: The table shows the number of problems each method solved. Column
function conv. shows how many problems each of the methods solved by the
function value criterion (see Equation 3), while column gradient conv. shows
how many problems each solver solved by the gradient criterion (Equation 4).
Column convergence shows the number of problems where either of the two
equations are satis�ed.

Solver function conv. gradient conv. convergence

GENO this paper 247 208 257
GENO Moré-Thuente 227 175 242
Ipopt 191 185 226
L-BFGS-B 231 211 245

shows that while our proposed line search, on average, uses the same number
of function evaluations, it solves more problems to optimality than competing
state-of-the-art approaches.
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Fig. 3: The histogram of the relative running times of L-BFGS-B and GENO.
Black lines represent minimum and maximum, while the red line represents
the median. The x-axis represents the relative di�erence of the two methods
computed as in Eqaution 5.

5 Conclusion

We presented a new line search approach. By integrating Bayesian optimization
into the line search process, we have developed a method that e�ciently uti-
lizes all available data - including function values and gradients - and e�ectively
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explores the search space to identify promising regions. This approach departs
from traditional line search methods, which often overlook valuable informa-
tion by focusing solely on re�ning step length intervals. Our method's e�cacy is
demonstrated through rigorous testing on the CUTEst test set, outperforming
existing state-of-the-art methods regarding solution quality. Our approach's sim-
plicity and ease of implementation allow for a seamless integration into existing
optimization frameworks.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. The surrogate-based POSEIDON algorithm for high dimen-
sional discrete multi-objective black-box optimization with constraints
has shown good performance on the Mazda benchmark car structure de-
sign problem that has 222 discrete variables and 54 black-box inequality
constraints. This paper explores the possibility of improving the wall
clock time of POSEIDON to find an approximate Pareto front through
parallel processing. The algorithm is modified to allow the selection of
multiple points for simultaneous objective and constraint function evalu-
ations in parallel. Within a given parallel iteration, the selection of points
for function evaluations is done sequentially, using not only the informa-
tion from previously evaluated sample points and also previously chosen
points within the current iteration. Numerical experiments on the Mazda
benchmark demonstrate that a parallel implementation of POSEIDON
using up to 8 processors provides considerable improvement over the se-
rial version on the set of nondominated points obtained as measured by
the hypervolume metric based on a given reference point at various com-
putational budgets. However, the improvements do not seem to scale very
well as the number of processors increase on the Mazda benchmark. Nev-
ertheless the parallel algorithm considered represents some progress that
may be used as a stepping stone for designing a more scalable parallel al-
gorithm for constrained discrete multi-objective black-box optimization.

Keywords: Constrained multiobjective optimization · ordinal discrete
variables · high-dimensional optimization · surrogates · parallel imple-
mentation.

1 Introduction and Motivation

Many papers have been written on surrogate-based and Bayesian approaches
for computationally expensive multiobjective optimization, including methods
that handle constraints. Parallel approaches have also been employed to reduce
the wall clock time of surrogate-based and Bayesian multiobjective optimization
methods on engineering optimization problems. However, much of the work on
surrogate-based multiobjective optimization do not handle discrete variables.
Moreover, the proposed surrogate-based multiobjective optimization methods



have mostly been tested on relatively low dimensional problems (i.e., 30 decision
variables or less). Part of the issue is that the surrogate used in the popular
Bayesian approach typically requires a considerable amount of time to fit on
high dimensional problems involving hundreds of decision variables.

The POSEIDON algorithm (Pareto Optimization using Surrogates for Ex-
pensive Inequality-constrained Discrete Ordinal and Nonlinear problems) [6] was
proposed as a surrogate-based approach to handle high-dimensional expensive
constrained multi-objective optimization involving hundreds of ordinal discrete
variables. Here, ordinal means that the values of the discrete variable can be
ordered. POSEIDON using Radial Basis Function (RBF) models has been suc-
cessfully applied and has outperformed non-surrogate alternative approaches on
the Mazda car structure design problem that has 222 ordinal discrete variables
and 54 black-box inequality constraints, which is among the largest benchmark
problems proposed in black-box optimization. The purpose of this article is to
explore a parallel implementation of POSEIDON that can take advantage of mul-
tiple cores and reduce the wall clock time needed to find an approximate Pareto
front for large-scale constrained discrete multi-objective optimization problems
such as the Mazda benchmark.

Specifically, this paper explores a parallel approach for POSEIDON to solve
the following constrained multi-objective optimization problem with ordinal dis-
crete variables:

minx∈Rd F (x) = (f1(x), . . . , fk(x))
s.t.

G(x) = (g1(x), . . . , gm(x)) ≤ 0
x(i) ∈ Di ⊂ R i = 1, . . . , d

where x(i) is the ith coordinate of x ∈ Rd and Di is an ordered finite set of
possible settings of x(i).

2 The POSEIDON Algorithm for Constrained Discrete
Multi-Objective Optimization

The POSEIDON algorithm [6] was designed for constrained discrete multiobjec-
tive optimization and it can handle problems even when a feasible solution is not
available at the start via a two-phase approach. The first phase uses surrogates
of the constraints to identify a feasible point while the second phase finds a set
of nondominated objective vectors that approximate the Pareto front or that at
least improves on the objective vector of the feasible point found.

In this paper, we consider the simpler scenario where a feasible point is
available at the beginning, which is not uncommon in engineering applications
where a feasible initial design is available and one seeks alternative solutions
that improve on some or all of the objectives. That is, we focus on designing a
parallel approach for Phase II of POSEIDON. Future work will incorporate a
parallel approach for Phase I, which is focused on finding a feasible solution to
the problem.



When a feasible initial point is available, POSEIDON begins by augment-
ing it with a set of points generated uniformly at random from the discrete
search space. Alternatively, one can use a space-filling design that is tailored
to the discrete search space. Then, among the feasible points, the initial set of
nondominated points is identified. Each iteration of POSEIDON fits or updates
multiple surrogates, one for each black-box objective function and one for each
black-box constraint. In the case of the Mazda benchmark, this means maintain-
ing a total of 56 surrogate models at any given time. Next, one of the current
nondominated points in the decision space is chosen as a center point and many
trial points are generated in some neighborhood of this nondominated center
point. Each trial point is obtained by modifying a fraction of the coordinates of
the chosen nondominated point. Three main strategies have been used to select
a center point. The random (RND) strategy randomly selects one of the cur-
rent nondominated points. The objective space distance (OSD) strategy chooses
the nondominated point that is the most isolated in the objective space. The
extreme objective vector (EOV) strategy randomly selects one of the nondom-
inated points that minimizes one of the objective functions among all current
nondominated points.

Next, among the trial points in each iteration, POSEIDON uses the surro-
gates for the constraints to determine those that are predicted to be feasible or
those that are predicted to have the smallest number of constraint violations.
Then, among these eligible trial points, POSEIDON uses the surrogates for the
objectives to determine which ones are predicted to be nondominated by the
current nondominated points and by the other eligible trial points in the current
iteration. The next point for function evaluation is then selected from the eligi-
ble trial points that are predicted to be nondominated by weighing the scaled
values of two criteria. One criterion is the MDOS, which is the distance between
the predicted objective vector of the trial point and the current set of nondomi-
nated objective vectors in the objective space. The other criterion is the MDDS,
which is the distance between the trial point and the current set of nondomi-
nated points in the decision space. In both cases, the distance of a point to a set
of points is defined as the smallest of the distances between that point and the
points in the given set. After the objective and constraint functions are evaluated
at the chosen promising sample point, the current set of nondominated points is
updated and POSEIDON iterates until the computational budget is reached.

Each trial point is obtained by modifying some of the coordinates of the
chosen nondominated center point. Each coordinate of the nondominated center
point is modified with a certain probability ppert. This modification consists
of changing the current coordinate by either increasing or decreasing its value
by a few discrete steps according to the restrictions set by the neighborhood
depth parameter depthnbhd. This parameter is the fraction of the number of
settings that the variable is allowed to increase or decrease. The values of the
two control parameters ppert and depthnbhd cycle through the iterations where
some settings correspond to a more global search while others correspond to a
more local search. One of the original implementations of POSEIDON employed



a local variant where the control parameters (ppert, depthnbhd) took on the values
⟨(0.5, 30%), (0.1, 10%), (0.05, 10%), (0.01, 10%)⟩ repeatedly in a cyclic manner.

3 A Parallel Approach for POSEIDON

The parallelization of POSEIDON consists of modifying the algorithm to gener-
ate multiple points to be evaluated simultaneously in a given iteration. This is
achieved by choosing multiple nondominated center points where several groups
of trial points will be generated in their respective neighborhoods. Moreover, var-
ious sizes of neighborhoods are used by considering different values of the control
parameters ppert and depthnbhd in a given parallel iteration. More precisely, the
exact sequence of values for ppert and depthnbhd as specified by the given cycle in
the original version are used in the parallel implementation except that multiple
sets of values (as many as there are processors or nodes) are considered in any
parallel iteration.

Moreover, within each parallel iteration, the selection of points for function
evaluation is done sequentially. The selection of a such a point uses some infor-
mation not just from previously evaluated points but also from points selected
earlier within the iteration before any function evaluations will take place in par-
allel. In particular, the MDOS criterion is modified so that it also incorporates
the distance between the predicted objective vector of a trial point with the
predicted objective vectors of the previously selected points within the current
parallel iteration. For example, if POSEIDON is running with 4 processors, when
choosing the third point for function evaluation among the trial points generated
from the third nondominated center point, the MDOS criterion also incorporates
the distance between the predicted objective vector of each trial point with the
predicted objective vectors of the first and second points chosen earlier within
the given parallel iteration. Similarly, the MDDS criterion is modified so that it
also incorporates the distance between a trial point and the previously selected
points (in the decision space) within the current parallel iteration.

4 Numerical Results on the Mazda Benchmark

A parallel implementation of the local variant of POSEIDON using radial basis
function (RBF) surrogates is implemented in Matlab and tested on the Mazda
3-car structure design problem [1, 3–5] that has 222 ordinal discrete variables
representing the thicknesses of structural parts, 54 black-box inequality con-
straints that includes collision safety requirements, and 2 objective functions: f1
is the total weight of three types of Mazda cars, and f2 is the number of common
gauge parts. The possible values for each decision variable range from 4 to 18 dif-
ferent settings resulting in a discrete search space of size 4.4427×10198, which is
unimaginable even by astronomical standards. The particular RBF model used
for the objectives and constraints is the same as in the original POSEIDON
algorithm, which is a cubic RBF augmented by a linear polynomial. There is
a way to implement the algorithm in such a way that the RBF models for the



two objective functions and 54 constraint functions can be updated very quickly.
This involves storing distances between all previous sample points and using an
efficient solver for the linear system needed to fit the model. This is one advan-
tage of RBF methods over the more popular Bayesian optimization approaches
where the surrogate models can take a considerable amount of time to fit on
much smaller dimensional problems.

The performance of Parallel POSEIDON is evaluated by calculating the hy-
pervolume corresponding to the set of nondominated points obtained by the
algorithm with respect to the reference point provided in [4]. Figure 1 (left)
shows the hypervolumes for the original (Serial) POSEIDON and Parallel PO-
SEIDON using 2, 4 and 8 processors at various parallel iterations, which roughly
correspond to various computational budgets. For truly computationally expen-
sive problems, the overhead computing times are small relative to the total time
spent on function evaluations, and so, the wall clock time of an algorithm at a
given instant is roughly proportional to the number of parallel iterations so far
(e.g., see [7]). Moreover, Figure 1 (right) shows the nondominated objective vec-
tors obtained by the serial and parallel POSEIDON after 800 parallel iterations.
From the figures, it can be seen that the parallel approach does significantly
improve the performance of POSEIDON in the sense that better hypervolumes
are obtained at fixed computational budgets (parallel iterations) when using 2
or 4 processors. However, the improvement obtained from 2 to 4 processors is
much less than the improvement from 1 (serial) to 2 processors, and the result
for 8 processors appears to stall. This indicates that the algorithm does not seem
to scale well with more processors. However, since the results presented are the
result of only one run, there is a possibility that the result for 8 processors was
a fluke and that multiple trials might show that the average case performance is
not so bad. Unfortunately, one trial run of these algorithms on the Mazda bench-
mark takes an enormous amount of time, so further investigations are needed
involving more computing resources. In any case, the parallel version of POSEI-
DON still provides some improvement that can be used as a stepping stone for
developing a more scalable parallel implementation.
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Abstract. Per-instance automated algorithm selection (AAS) aims at
leveraging the complementarity of optimization algorithms with respect
to di�erent problem types. State-of-the-art AAS methods for numerical
black-box optimization rely on supervised learning techniques that are
supported by exploratory landscape analysis (ELA) feature sets. Recent
works question the generalization ability of popular AAS approaches,
which motivated the design of alternative feature sets.
In this work, we take a closer look at the recently proposed set of Deep
ELA features and investigate the ways in which Deep ELA complements
the classical ELA feature sets. To this end, we �rst study the correlation
between the two feature collections, both through pairwise classi�cation
and through regression models. The complementarity observed in these
analyses is con�rmed by an AAS study, where models combining deep
and classical features outperform those that are restricted to selecting
from only of the two collections.

Keywords: Black-box Optimization · Exploratory Landscape Analy-
sis · Automated Algorithm Selection · Deep Learning · Self-Supervised
Learning · Feature Selection

1 Introduction

Automated Algorithm Selection (AAS) [24], aimed at automatically selecting
the best performing algorithm for a given problem, as well as the closely re-
lated task of Automated Algorithm Con�guration (AAC), which similarly aims
at selecting the best performing con�guration of a single algorithm, have long
been of interest to the optimization community [2, 13]. This interest stems from
the fact that both AAS and AAC can drastically reduce the runtime needed
to solve a given optimization problem and simultaneously substantially improve
optimization performance. As the algorithm performance is closely tied to the
landscape of the optimization problem being solved, the task of selecting the
best-performing algorithm or con�guration requires some low-level information
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about the optimization landscape which are usually described as numerical val-
ues, referred to as (instance-)features.

In continuous single-objective black-box optimization, AAS and AAC have
recently seen a growth in popularity, fueled in large parts by the availability
of dedicated feature sets such as Exploratory Landscape Analysis (ELA) [15],
which allow for the transformation of problem samples into landscape features
without requiring prior domain-expert knowledge of the problems. ELA features
can be conveniently calculated using programming libraries such as �acco [13]
and p�acco [22]. This has led to a large amount of research in this area [5, 10,
11, 12, 16, 19, 20, 27]. In these works, the authors utilize landscape features and
algorithm selection or con�guration to demonstrate an overall reduced runtime
in comparison to relying solely on the Single-Best Solver (SBS). In other words,
the algorithm selection model is capable of selecting speci�c algorithms for each
problem in a problem suite to improve performance compared to only using a
single overall best-performing algorithm.

Despite the bene�ts provided by ELA, the features it produces are not with-
out �aws. Commonly criticized drawbacks include (1) a large correlation between
features, (2) concerns over the expressiveness and robustness of the features [23],
(3) additional computational costs to compute the features, and (4) a lack of gen-
eralizability of the features to problems sets outside of the one that they were
developed for [14, 17, 30].

As a result, there is currently a large research interest in developing al-
ternative approaches for automatically representing a problem landscape. For
example, the authors of [3, 25, 28] proposed learned features for continuous
optimization problems. Rather than relying on experts to design feature sets
manually, those authors used di�erent training tasks to automatically extract
instance features. While van Stein et al. [28] used a simple multi-layered au-
toencoder architecture including an unsupervised training task, Cenikj et al. [3]
used a deep transformer architecture [29] trained on the Black-Box Optimiza-
tion Benchmarking suite [BBOB, 9] by predicting the function identi�er. Seiler
et al. [25] also utilized a transformer architecture but relied on a self-supervised
learning strategy that does not require any labeling.

However, when developing such learned features, it is important to ensure
that these features are not simply novel, but that they also complement each
other, as well as the original ELA features. Without complementarity, such newly
developed features would only restate the knowledge that is already contained
in the traditional ELA features, without necessarily improving the overall un-
derstanding of a problem's landscape. Nevertheless, we must also ensure that
these newly developed features do not just contain novel information, but also
still capture existing knowledge. This ensures that the newly developed features
can be used on their own, and applied to domains for which no current feature
sets exist.

Another bene�t of performing complementarity analysis is that, particularly
in the case of approaches based on deep learning, interpreting their results can be
di�cult. Comparing these newly developed features to ELA features, which are
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designed to correspond to a set of well-understood high-level problem properties,
such as modality, global-to-local optima contrast, or separability, can help us
better understand the behavior of the newly developed features.

Our contribution: In this paper, we will focus on the recently proposed
Deep ELA feature set proposed in [25]. Deep ELA was shown to combine the
bene�ts of both traditional ELA features (their ease of computation and lack
of over�tting) with those of deep-learning-based feature-free approaches (in par-
ticular, their invariance to common problem transformations and their low cor-
relation). Deep ELA has already shown promising results, drawing level with
or even outperforming both traditional ELA and feature-free approaches in a
single-objective AAS study [25]. However, the complementarity of the newly de-
veloped Deep ELA features and the original ELA features (which we will refer to
as classical ELA features in the rest of the paper) is yet to be examined. Using
correlation and regression analyses, we �rst observe that there is some overlap
in the information captured by the classical ELA features and the Deep ELA
ones. However, we also show that the sets complement each other, in that some
features of the ELA set are di�cult to predict by the Deep ones. We further
verify this complementarity with an AAS study, which shows that combining
the two approaches improves the performance over the stand-alone feature sets.

Paper organization: This paper is structured as follows. In general, we aim
to analyze the complementarity and supplementarity of these two approaches,
classical ELA and Deep ELA, in multiple ways. First, we provide the background
necessary for the understanding of this paper, including an overview of classical
ELA and Deep ELA (see Chapter 2). In Chapter 3, we compare the pairwise
correlation of the Deep and classical ELA features. In Chapter 4 we train a
Support Vector Machine (SVM) model to predict the classical ELA features
using the Deep ELA features. Finally, we perform a study on AAS and compare
the performance of models trained using the classical and Deep ELA features,
as well as a model that uses the combination of both the classical and the
Deep ELA features (see Chapter 5). If the classical and Deep ELA features are
complementary, we would expect that the performance of the model increases
when both types of features are used. On the other hand, we expect that Deep
ELA features provide comparable performance if they mostly substitute classical
ELA features. Last, we discuss in Chapter 6 the obtained results as well as their
implications, summarize our results, and present avenues for future work.

2 Background and Methodology

To perform AAS using machine-learning models, we require some way of describ-
ing the landscape of an optimization problem that can be used by the model. One
of the most common ways to do so in state-of-the-art research is the extraction
of Exploratory Landscape Analysis (ELA) features. This approach, introduced
by Mersmann et al. [15], allows for the automatic extraction of low-level ELA
(instance-) features that correspond to speci�c high-level problem properties,
such as the problem's modality or the ruggedness of its landscape. Further, the
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Fig. 1. Explainable Variance of classical (labeled as ELA 25d/50d) and Deep ELA
features (labeled as Medium/Large 25d/50d). 25d and 50d correspond to the sample
size while medium/large describes the model size of the Deep ELA models. Deep ELA
features contain less redundant information as their principal components explain less
of the overall variance.

ELA features can be calculated purely from a small amount of problem samples.
Usually, a sample size of 50d or for improved robustness 250d are commonly
chosen sample sizes that scale linearly with the dimensionality d of the decision
space.

In the following, we will focus on a subset of these features, omitting cat-
egories that require additional samples (sampled iteratively) or the transfor-
mation from set-based into graph-based representation. These approaches di�er
substantially from Deep ELA which requires only a single set of samples and,
hence, inhibit a fair comparison. In addition, the features that rely on graph-
based representation are computationally expensive when applied to problems
with a larger dimensionality. The used feature categories are:

Meta-Model features, which �t either a linear or a quadratic model to the
provided problem samples, and use the metrics of this mode (such as the
model's R2 score) for the features.

PCA features, which compute the Principal Components of the sample, and
use metrics such as the number of components required to explain 90% of
the variance of the original samples as the features.

Nearest Better Clustering features, which examine the samples based on
the distance between their nearest neighbors versus their better neighbors,
where a better neighbor is a neighbor with better �tness.

Dispersion features, which compare the distribution of a subset of samples
with the best �tness values against the distribution of the entire sample set.

Information Content features, based on a method for approximating the rugged-
ness of the problem landscape.
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y-Distribution features, which represent descriptive statistics of the distribu-
tion of the �tness values, such as their skewness or kurtosis.

Linear model features, which divide the sample space into cells, and �t a linear
model on each of the cells separately, then compare the various statistics of
these models.

Fitness Distance Correlation features, which calculate the distances between
samples in objective and in decision space, and compare various statistics
between the two.

Speci�cally, in this paper, we consider the normalized variants of these fea-
tures by min-max normalizing the objective space prior to the feature computa-
tion as proposed by [21].

However, as already noted in the introduction (see Chapter 1), ELA land-
scape features are not without �aws, and recent research has proposed several
alternative methods. Hence, we will focus on an approach named Deep ELA
[25], which proposed four pre-trained deep-learning models that were trained on
200 million randomly generated single- and multi-objective continuous optimiza-
tion problems. Two of these models accept up to six input dimensions (medium
models) while the other two accept up to twelve dimensions (large models). In
addition, the authors experimented with input sizes of 25d and 50d for each
medium and large architecture. The pre-trained models are transformer-based
[29] and were trained using a self-supervised training task, closely following the
idea proposed by [4].

Both ELA features and feature-free approaches have shown very promising
results when applied to AAS and AAC. Kerschke et al. [11] provide an overview
of AAS in the �eld of optimization, and note the success of using ELA to ad-
dress the algorithm selection problem. In the �eld of single-objective continuous
optimization, AAS has primarily focused on the 24 BBOB problems [9] of the
COCO [8] benchmarking platform, a set of popular and well-known problems
for benchmarking continuous optimization algorithms. Kerschke and Trautmann
have shown that it is possible to reduce the expected running time on the set of
24 problems by half compared to a single best solver [12]. Prager et al. achieved
only slightly worse results using a feature-free approach [20]. Finally, Deep ELA
[25] consistently outperformed the feature-free approach described in [20], and
in some cases outperformed the ELA-based approach described in [12]. Further,
Deep ELA can be applied to AAS of multi-objective optimization problems (see
Seiler et al. [25]) out of the box and have shown promise in combinatorial opti-
mization [1]. Yet, we limit the scope of this paper to single-objective optimization
problems.

3 Correlation Between Deep and Classical ELA

We begin our analysis with the comparison of the correlation between the Deep
and classical ELA. In all that follows, we label the Deep ELA features as either
`Medium 25d', `Medium 50d', `Large 25d' or `Large 50d', depending on the size of
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Fig. 2. Strongest correlation between the classical ELA features (rows) and the features
of the Deep ELA models, for each of the four Deep ELA models (columns). The color
scheme is based on absolute values; the darker the color, the stronger the (positive or
negative) correlation.

the Deep learning model and the number of evaluated solutions per function that
were used to train it, to which we refer to as `sample size' in the following. In this
and all of the following experiments, both the classical and Deep ELA features
are calculated on the 24 noiseless single objective BBOB problems, speci�cally
on the �rst 20 instances of each function in dimensions 2, 3, 5 for the medium-
sized model and, in addition, for dimension 10 for the large models. Following
the recommendations made in [19, 20, 26], we base our feature computations
on 50d and, in addition, also 25d samples, taken from the search space by Latin
Hypercube Sampling (LHS). The Deep ELA features were computed by following
closely the procedure described in [25].

Figure 1 shows the cumulative variance of the features calculated using the
two approaches after performing Principal Component Analysis (PCA). We can
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(a) Medium 50d (b) Large 50d

Fig. 3. Correlation heatmap between classical and Deep ELA features. In (a) the cor-
relation between the Medium 50d model and the classical ELA features while in (b)
the Large 50d model is depicted.

see that there is a distinct di�erence in the explained variance between the Deep
and classical ELA. For the classical features, the �rst few components alone
already explain about 60% of the variance, while the Deep features require a
larger amount of components to reach this level. This indicates that the Deep
ELA features contain less redundant information as PCA is e�cient in reducing
redundancy as well as noise. Hence, a low number of PCs that explain a large
proportion of the original variance indicates that the original data contains many
redundant and noisy information.

Further, Figure 3 shows the pairwise Spearman correlation between the clas-
sical and Deep ELA features using a sample size of 50d and the medium and large
ELA models. We omit the comparison for the models with a sampling size of
25d as this produced similar results. Further, we can see that most classical ELA
features have a weak to medium correlation to Deep ELA, which indicates that
Deep ELA is somewhat representative of the characteristics of classical ELA. An
exception to these are the pca and to an extent the limo feature groups, which
are only weakly correlated with the Deep ELA features.

Finally, despite the fact that Deep ELA features are not comparable between
di�erent models as the training routine does not enforce any speci�c feature to
be learned, we still see similar patterns emerge in both of the models. Further, as
it is evident in Figure 2, the maximal correlation values between any Deep ELA
feature and every classical ELA feature have similar absolute values across the



386 M. Seiler et al.

di�erent models. This is particularly interesting as (again) the training routine
of the Deep ELA models does not enforce any speci�c and pre-de�ned feature to
be learned. Instead, it lets the models learn any meaningful representation given
an optimization problem as input. Yet, we can see in Figure 3 and Figure 2, that
all four models learn similar features as these features have a similar correlation
to the expert-designed classical ELA features. Yet, pairwise correlations are only
a weak method to verify that certain feature sets contain similar information.

4 Classical ELA Feature Prediction

In this chapter, we conduct an additional experiment to determine whether the
information contained in the entire set of Deep ELA features matches up with
the information provided by the classical ELA features. To achieve this, the
Deep ELA features are used to train a linear SVM model that predicts the
classical ELA features. Further, we use Recursive Feature Elimination [RFE, 7]
to select the most relevant Deep ELA features for predicting the classical ones,
which allows us to see which Deep ELA features are most closely related to the
classical features. RFE removes the least relevant feature based on the SVM's
coe�cients, iteratively.

Figure 4 shows the result of the feature prediction experiment. Here, the
labels on the side of the �gure show the standardized root Mean Square Er-
ror (rMSE) between the predicted and the target feature. Individual cells show
us which Deep ELA features were considered important by the model to predict
each classical ELA feature, after performing recursive feature elimination accord-
ing to the coe�cients of the trained SVM model. One can see that most of the
features can be well predicted using an SVM model, which reinforces the �ndings
from the correlation analysis, i.e. that the Deep ELA features mostly capture
the information provided by the classical ELA features. In addition, one can also
see that the pca feature category is predicted well, despite the low correlation
with individual Deep ELA features, which shows the importance of this type of
analysis, as it is important to consider the interactions between individual ELA
features.

Predicting the feature ela_meta.lin_simple.coef.max achieves somewhat
worse performance than the rest of the features in both models. This indicates
that, despite most classical ELA features can be well substituted, Deep ELA
features still do not capture all classical ELA features. On the other hand, we
can also identify Deep ELA features that are somewhat irrelevant for predicting
classical ELA features. An example is the X11 feature of the Large 50d model
depicted in Figure 4 (b). This deep feature may be unrelated to classical ELA
features and may capture certain information that is not captured by classical
ELA features at all. Again, we �nd similar rMSE values between the Medium
50d and Large 50d models, which strengthens our �nding that the Deep ELA
models learn similar representations although their training routine does not
enforce learning to encode anything speci�c structures or information of a given
optimization problem.



Synergies of Deep and Classical ELA Features 387

(a) Medium 50d (b) Large 50d

Fig. 4. Feature importance of the Deep ELA features used to predict classical ELA
ones using a Linear SVM in combination with recursive feature elimination. Selected
Deep ELA features are indicated by a black dot, with the color of its surrounding box
indicating the feature's importance. In some cases, ELA features contained missing
values (which is within the de�nition of classical ELA features, e.g. limo features
require a certain number of candidate solutions which is not always given in our setup)
and, hence, no prediction was performed.

5 Automated Algorithm Selection Study

Finally, we examine the performance of the classical and Deep ELA features
for the task of Automated Algorithm Selection (AAS). These experiments are
performed using two di�erent machine learning techniques to train the algorithm
selectors: k Nearest Neighbors (kNN) and Random Forests (RF), using the same
methodology as described in [12, 20, 25]. In addition, we applied Sequential
Forward Feature Selection (SFFS) in combination with 5-fold cross-validation.
The process of feature selection is in the outer loop. Therefore, the selected
features are the same across the �ve folds and the �ve trained models. For both
learners, kNN and RF, and for each of the two sampling sizes (25d and 50d)
three di�erent models are trained: (1) using classical ELA features (ELA), (2)
using Deep ELA features (Deep), and (3) using a combination of both classical
and Deep features (Comb.). The last model starts with the best set of Deep ELA
features and sequentially adds classical ELA features. Other than that, we used
the same setup as described in Kerschke et al. [12, 20, 25].

Table 1 lists classical ELA features that are often selected by either the
classical ELA or the combined selectors. To be more precise, it lists all ELA
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Fig. 5. Visualization of all trained AAS models based on the achieved performance
(rERT) and the total number of features used. Non-dominated selectors are highlighted
by a red circle.

features that were at least two times more often selected by one over the other.
On the other hand, the dimensionality features as well as the PCA-based features
are signi�cantly less required by the combined selectors. This indicates again
that the Deep ELA features represent similar meanings. On the other hand, the
dispersion features are more often utilized by the combined selectors, noticeably.
This indicates that the Deep ELA features do not substitute this information
well.

Sub�gures (a) and (b) in Figure 6 show how the performance of the models
changes with the number of features selected. One can see that in the case of
using just the classical or the Deep ELA features individually, only 20%−40% of
all available features produces close to optimal results. We also see that the kNN
models work well even with a very small amount of features, while the random
forests require a certain amount of features to reach performance better than the
SBS. Sub�gure (c) visualizes the improvements of a selector that utilizes only
Deep ELA by the gradual addition of classical ELA features. We see that, for
most models, an addition of only a few classical features results in a noticeable
performance improvement, with the best-performing model achieving a further
increase once around 30% of the features have been added. For most models,
using all of the available landscape features produces a sharp decrease in perfor-
mance. Figure 6 (c) also depicts a clear separation between 25d and 50d sample
sizes, indicating that smaller sample sizes outperform larger ones. Selecting a
sample size is always a trade-o� between the accuracy of the computed features
and additional costs. Larger sample sizes provide more (redundant) information
which leads to higher stability of the compute features but also increases costs as
more candidate solutions must be evaluated. In our case, we found that smaller
costs (25d) outperform the higher feature quality (50d), indicating that ELA
features (both Deep and classical) are even stable enough for small sample sizes.
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(a) Large Models vs class.
ELA

(b) Large Models vs class.
ELA (Zoomed)

(c) Comb. of Deep and
class. ELA

Fig. 6. Figures (a) and (b) show how the AAS model's rERT score changes with the
number of features used, with Figure (b) showing only the rERT range of [4.0, 10.0] to
allow for a more detailed examination once the rERT score starts to converge. Figure
(c) depicts the impact of adding classical ELA features to the best set of Deep ELA
features. Overall models, the best performance is achieved by a combined RF model
18 Deep ELA and 36 classical ELA features., for a total of 54 features.

Finally, Table 2 shows the full results of the algorithm selection study after
the feature selection has been performed. Only a single model is trained for each
column, with the rows representing the single model's performance separately by
dimension and BBOB feature group. The selectors' performance is assessed by
using the relative Expected Running Time (rERT), which measures the average
time needed to reach a target precision (the found optimal solution is within a
ε = 0.01 distance to the true global optima), normalized by the best-achieved
average across the entire table. The rERT values also include the feature-costs
which are in this case the number of sampled and evaluated candidate solutions.

One can see that all machine learning models mostly outperform the SBS
baseline, with some exceptions in dimensions and feature groups where the SBS
performance is close to the VBS. The �nal row presents the overall performance
of each algorithm, with all algorithms that are stochastically tied to the best
selector marked with a star using Robust Ranking with an α = 0.05 [6]. Examples
are (1) RF-based selector trained on classical ELA features and a sample size of
25d as well as (2) all models (kNN and RF as well as their Deep and Combined
variants) trained on the Medium 25d features. The stochastic approach does not
produce a clear winner in terms of the methodology used. However, in terms
of pure performance, we can see that in all cases, the combined model using
both classical and Deep ELA features outperforms the other two models. This
indicates that neither Deep ELA nor classical ELA are complete substitutes for
one another. In fact, both feature types encode some information that the other
does not.

Overall, all types of models performed impressively compared to the SBS,
outperforming it by a large margin both overall and in the majority of feature
categories and dimensionalities. This matches prior work which has shown that
ELA can be e�ectively used for automated algorithm selection on the BBOB
problems, and also shows that Deep ELA achieves results competitive with the
current state-of-the-art on this problem.
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Table 1. List of the classical ELA features that are selected frequently by the classical
ELA-based algorithm selectors and rarely by the Deep ELA-based selectors and vv.

Feature ELA Comb. Feature ELA Comb.

d_2 7 3 ic.eps_max 6 4
d_3 6 2 ic.eps_ratio 3 5
disp.di�_median_02 0 2 ic.eps_s 7 4
disp.di�_median_05 1 3 ic.h_max 4 2
disp.di�_median_10 1 3 limo.avg_length 3 1
disp.di�_median_25 4 2 limo.length_mean 3 1
disp.ratio_mean_25 5 3 nbc.dist_ratio.coe�_var 1 3
ela_distr.number_of_peaks 4 2 pca.expl_var.cor_init 4 1
ela_distr.skewness 7 5 pca.expl_var.cor_x 6 3
ela_meta.lin_simple.coef.max 0 2 pca.expl_var.cov_init 6 3
�tness_distance.fd_correlation 2 0 pca.expl_var.cov_x 6 4
�tness_distance.�tness_std 4 6 pca.expl_var_PC1.cov_init 4 2

Figure 5 plots all of the models based on their performance versus the number
of features used. We can see a set of non-dominated models consisting of �ve
AAS models: `RF Deep (Medium 50d)', `kNN Deep (Large 25d)', `RF Deep
(Medium 25d)', `RF (ELA 25d)', and `RF Comb. (Large 25d)'. From this, we see
that the deep features provide us both with a model that achieves the absolute
best performance, as well as the one with the fewest features. However, the
`RF (ELA 25d)' model still achieves performance close to the best algorithm
with only a small decrease in performance. We �nd those two models the most
interesting: `kNN Deep (Large 25d)' and `RF Comb. (Large 25d)'. For the �rst
one, the performance is still exceptionally good but only requires a minimal
amount of features. On the other hand, `RF Comb. (Large 25d)' provides the best
performance but requires multiple times more features � especially a mixture
of classical and Deep ELA features. Nonetheless, a sample size of 25d and the
large Deep ELA model seem to be (generally speaking) superior and will be our
main focus for future work.

6 Discussion & Conclusion

In this paper, we have analyzed the complementarity between classical and Deep
ELA features as well as the substitutability of classical ELA by Deep ELA fea-
tures. We additionally analyzed their performance for the task of automated
algorithm selection, both when used individually and when the two are com-
bined and used in a single model. Our experiments have shown that there is
some amount of complementarity between Deep and classical ELA. While there
is a certain degree of overlap, we have shown that the Deep ELA features pro-
vide additional information not captured by the classical ELA features and vice
versa. This can be seen both in the complementarity analysis, as well as in
the consistent improvement in algorithm selection performance when using a
combined model of both classical and Deep ELA features. In general, all of
the examined models achieved impressive algorithm selection results, consistent
with prior work which shows great promise in algorithm selection on the BBOB
problem set. Of the examined models, the combined model using classical ELA
and the Large Deep ELA model trained on a sample size of 25d achieved the
absolute best performance, this performance was not signi�cantly better than
some of its competitors. Especially, all models trained on the Medium 25d Deep
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Table 2. Results of the AAS study. The numbers of selected features are in brackets;
∗ indicates a result that is stochastically tied to the best selector with α = 0.05 using
the robust ranking technique as proposed by [6]. The �rst column (D) indicates the
dimensionality of the problem while the second column (FGrp) indicates the function
groups as de�ned in BBOB.

Classical ELA Large (25d) Large (50d) Medium (25d) Medium (50d)
SBS (23) kNN (14) (17) RF (23) (10) kNN (85) (18) RF (54) (28) kNN (39) (14) RF (25) (11) kNN (57) (16) RF (19) (18) kNN (23) (10) RF (47)

D FGrp (HCMA) 25d 50d 25d 50d Deep Comb. Deep Comb. Deep Comb. Deep Comb. Deep Comb. Deep Comb. Deep Comb. Deep Comb.

2 1 3.71 9.12 12.37 9.61 14.00 9.03 8.81 9.35 8.49 14.98 14.41 14.59 12.71 10.35 8.41 7.93 8.31 16.77 14.44 14.35 11.92
2 5.80 3.23 3.61 3.26 3.52 3.26 2.63 2.78 2.65 3.54 3.54 4.42 3.53 3.01 3.11 2.65 3.45 3.51 3.53 4.68 3.73
3 6.29 3.07 4.38 3.08 4.12 4.51 3.32 3.06 2.73 4.26 4.28 4.68 4.14 3.87 3.25 3.85 3.23 4.62 4.85 4.52 4.34
4 25.34 6.74 6.85 6.63 6.81 7.31 7.04 7.11 5.72 4.36 4.48 5.04 6.21 4.76 5.99 5.92 5.78 4.00 4.47 5.35 3.83
5 44.95 4.91 4.82 3.20 2.86 4.28 3.99 4.15 3.46 4.04 2.82 4.65 3.21 4.22 4.07 3.72 2.69 3.69 3.23 6.28 2.54

all 17.69 5.50 6.52 5.23 6.38 5.78 5.26 5.40 4.69 6.35 6.00 6.77 6.06 5.33 5.05 4.90 4.74 6.64 6.21 7.13 5.33

3 1 356.10 10.98 15.53 10.16 15.07 10.79 11.43 11.11 10.36 15.96 15.75 16.08 14.68 10.88 10.75 10.97 11.09 16.00 16.04 15.77 15.40
2 4.46 2.65 3.34 2.49 3.31 2.61 2.79 2.52 2.55 3.45 3.44 3.46 3.18 2.59 2.62 2.83 2.60 3.36 3.31 3.74 3.41
3 4.98 2.55 4.05 2.59 3.72 3.88 2.72 2.56 2.43 3.75 3.76 3.85 3.80 2.88 2.60 3.17 2.92 3.72 3.63 3.85 3.88
4 2.63 6.58 6.71 5.43 4.98 5.66 5.99 6.31 6.32 5.72 5.44 5.46 5.24 5.93 6.02 4.02 3.69 5.95 5.89 4.23 4.29
5 66.81 2.56 2.71 2.09 2.02 2.53 2.64 2.33 2.39 1.92 2.16 4.86 1.69 2.77 2.62 2.12 2.03 2.72 2.79 2.94 2.86

all 90.43 5.16 6.60 4.64 5.92 5.20 5.21 5.07 4.90 6.27 6.22 6.88 5.82 5.11 5.02 4.70 4.54 6.47 6.46 6.20 6.07

5 1 11.99 17.59 22.95 16.79 22.01 19.06 17.42 17.52 16.72 23.19 23.25 23.50 21.97 17.52 17.40 17.81 17.27 24.40 23.43 25.57 23.04
2 3.90 3.07 3.30 2.85 4.19 3.65 3.54 3.61 4.11 2.58 2.77 3.28 3.36 2.49 2.49 2.46 2.47 3.71 3.70 3.38 2.98
3 4.21 3.72 4.91 3.17 4.80 4.80 3.52 4.85 3.48 5.06 4.87 5.56 4.95 3.70 3.52 3.67 3.64 4.47 4.47 3.91 4.40
4 4.29 4.86 4.15 4.00 3.86 4.28 4.17 4.09 3.95 3.95 3.89 4.50 3.44 2.96 3.78 3.70 3.09 4.00 3.89 2.88 2.61
5 7.67 6.08 2.11 1.60 2.33 1.71 2.39 2.61 1.38 1.17 1.16 1.48 1.75 2.18 1.71 1.45 1.90 1.47 1.79 1.25 2.10

all 6.52 7.23 7.66 5.80 7.57 6.83 6.32 6.66 6.00 7.38 7.37 7.84 7.25 5.91 5.92 5.96 5.81 7.77 7.61 7.56 7.19

10 1 2.74 9.54 16.34 8.63 15.42 9.54 9.60 9.50 8.60 16.76 16.58 16.20 15.41 -/- -/- -/- -/- -/- -/- -/- -/-
2 2.16 2.43 2.71 2.40 2.70 2.43 2.42 2.42 2.41 2.69 2.69 2.63 2.61 -/- -/- -/- -/- -/- -/- -/- -/-
3 2.76 3.62 4.20 2.79 3.72 3.62 3.60 3.59 2.83 4.88 4.56 4.06 3.67 -/- -/- -/- -/- -/- -/- -/- -/-
4 2.02 2.05 1.95 1.86 1.93 2.05 2.04 2.06 1.85 2.05 2.06 2.08 2.01 -/- -/- -/- -/- -/- -/- -/- -/-
5 23.64 1.74 1.78 1.68 1.76 2.16 1.77 4.76 1.40 2.15 2.07 2.49 1.50 -/- -/- -/- -/- -/- -/- -/- -/-

all 6.85 3.94 5.51 3.52 5.20 4.02 3.95 4.55 3.46 5.83 5.71 5.61 5.14 -/- -/- -/- -/- -/- -/- -/- -/-

all 1 93.63 11.81 16.80 11.30 16.62 12.11 11.82 11.87 11.04 17.72 17.49 17.59 16.20 12.92 12.19 12.24 12.22 19.06 17.97 18.56 16.79
2 4.08 2.84 3.24 2.75 3.43 2.99 2.84 2.83 2.93 3.06 3.11 3.45 3.17 2.70 2.74 2.65 2.84 3.53 3.51 3.93 3.37
3 4.56 3.24 4.38 2.91 4.09 4.20 3.29 3.51 2.87 4.49 4.37 4.54 4.14 3.49 3.12 3.57 3.26 4.27 4.32 4.09 4.20
4 8.57 5.06 4.91 4.48 4.40 4.83 4.81 4.89 4.46 4.02 3.97 4.27 4.22 4.55 5.27 4.55 4.19 4.65 4.75 4.15 3.57
5 35.77 3.82 2.86 2.14 2.24 2.67 2.70 3.46 2.16 2.32 2.05 3.37 2.04 3.06 2.80 2.43 2.21 2.63 2.60 3.49 2.50

all 30.37 5.46 6.57 4.80∗ 6.27 5.46 5.19 5.42 4.76∗ 6.46 6.33 6.78 6.07 5.45∗ 5.33∗ 5.19∗ 5.03∗ 6.96 6.76 6.97 6.20

ELA models are stochastically tied to the Large 25d model, indicating superior
performance of the 25d models versus the 50d ones.

The models trained using only the Deep ELA features also performed well,
with some achieving performance that is stochastically tied to the best-performing
model, and with one particular model achieving such performance using only 11
features total. The fact that the Deep ELA features were able to match the
performance of the classical features makes them an important candidate for
research into domains that cannot be tackled yet by classical ELA, such as
multi-objective optimization, opening doors to a large amount of potential fu-
ture research.

Another area that still needs to be assessed is the generalizability of Deep
ELA to problems outside of the BBOB benchmark suite, where classical ELA
features have been shown to struggle. In addition, Prager et al. [20] have demon-
strated the successful application of cost-sensitive learning. In future work, we
will investigate this approach more closely � especially in combination with
Deep ELA features.

Finally, it will also be important to assess the complementarity of Deep ELA
with other recently developed approaches for describing problem landscapes,
such as TransOPT [3] and Topological Landscape Analysis [18]. However, the
methods presented in this paper should be easily applicable to such a comparison,
and we plan to conduct such an analysis in the future.
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Abstract. This report presents a novel approach to quantifying
and comparing national efforts towards the United Nations Sustain-
able Development Goals (UNSDGs) by developing a Sustainable
Development Index (SDI) using Mixed-Integer Linear Programming
(MILP). The methodology uniquely integrates MILP to optimize
the weighting of various sustainability indicators, offering a robust
and mathematical foundation for the SDI. This approach not only
captures the discrete and linear aspects of sustainability indicators
but also aligns the resulting index with existing measures such as the
Human Development Index (HDI) and Environmental Performance
Index (EPI). Through meticulous data collection, normalization, and
MILP-based analysis, the report examines 17 unique indicators, each
representing a specific UNSDG. The study employs advanced opti-
mization tools, including Gurobi Optimizer and Julia programming
language, to compute the SDI, ensuring an objective and reliable
comparison of countries’ sustainability performances. The report
reveals insightful findings, with the SDI offering a clear and quantifi-
able measure of progress towards the UNSDGs. The outcome of this
research has significant implications for policymakers, researchers,
and the public, providing a nuanced understanding of national sus-
tainability efforts. It underscores the utility of MILP in addressing
complex global challenges and sets a precedent for future research in
sustainable development assessment.

Keywords: Sustainable Development Index (SDI), Mixed-Integer
Linear Programming (MILP), Mathematical optimization in sustain-
ability

1 Introduction
Sustainable development, first clearly defined in the 1987 Brundtland Report
by the United Nations Brundtland Commission, has been at the forefront of
global agendas for over three decades (United Nations, n.d.). This foundational
document underscored the urgent need for strategies that harmonize development
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with environmental sustainability. Since then, the concept has expanded to
include three interconnected dimensions—environmental, social, and economic
sustainability—which collectively address the multifaceted challenges of our
global community. The adoption of the United Nations Sustainable Development
Goals (UNSDGs) by all Member States in 2015 further solidified the world's
commitment to this agenda. These goals offer a comprehensive blueprint for
peace and prosperity for people and the planet, now and into the future.

This report introduces a novel quantitative framework—the Sustainable De-
velopment Index (SDI)—using Mixed-Integer Linear Programming (MILP) to
analyze and compare national efforts toward achieving the UNSDGs. MILP is
an optimization framework that is crucial for assigning appropriate weights to
diverse sustainability indicators, thus forming a robust mathematical base for the
SDI. This method ensures that both the discrete decisions and the continuous
inputs are optimally integrated, reflecting the multi-faceted nature of sustain-
ability metrics. The SDI is meticulously developed through a methodology that
integrates MILP to optimize the weighting of various sustainability indicators,
thereby providing a robust and mathematically sound foundation for national
sustainability assessments. This integration is crucial as it encapsulates the linear
and non-linear aspects of sustainability measures and aligns them with estab-
lished indices like the Human Development Index (HDI) and the Environmental
Performance Index (EPI).

The organization of this paper is as follows: After this introduction, the back-
ground section expands on the evolution of the sustainability concept and the
development of the UNSDGs. It also details the role of MILP in optimization
challenges, which is critical for the theoretical underpinning of the SDI. The
subsequent sections methodically discuss the MILP-based formulation of the
SDI, the data collection and normalization processes employed, and the index
calculation. The results section then presents the findings from the application
of this methodology, offering insights into national performances and disparities
in sustainability efforts.

The main contribution of this paper lies in its innovative approach to quantifying
sustainability through advanced mathematical programming. Unlike typical
assessments that may rely on subjective or unevenly weighted indicators, the SDI
provides a scalable, objective measure of sustainability that can be tailored for
comparative analysis across different national and regional contexts. This paper
does not only contribute to academic discourse but also serves as a practical tool
for policymakers and researchers who aim to evaluate and enhance sustainability
initiatives effectively.

2 Background and Literature Review
The literature on the use of MILP in sustainable development highlights its
effectiveness in optimizing complex, multi-dimensional problems [1]. Studies
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have shown MILP's capabilities in applications ranging from optimizing energy
systems and resource management to evaluating economic development and envi-
ronmental performance [2]. By integrating these methodologies with the UNSDG
framework, this paper advances the field of sustainable development assessment,
proposing a rigorous and scalable approach to measuring and comparing national
sustainability efforts [3].

A review of related literature demonstrates a growing recognition of the need for
robust tools to assess sustainability. The SDI developed in this report is informed
by previous works that have utilized similar optimization techniques to address
global challenges. For example, the HDI, introduced by the United Nations
Development Programme in 1990, and the EPI, developed by Yale University,
have both provided foundational models for integrating various indicators into a
cohesive assessment tool [4,5]. This report builds upon these methodologies, using
MILP to refine and weight sustainability indicators comprehensively, thereby
enhancing the ability to conduct detailed analyses of how countries are performing
against the UNSDGs.

Thus, the integration of MILP into the development of the SDI represents a
significant advancement in the quantitative assessment of sustainability. By
leveraging this advanced mathematical tool, the SDI not only provides a reliable
and objective measure of national sustainability efforts but also sets a precedent
for future research and policy-making in sustainable development.

3 MILP & Sustainable Development
To effectively assess and track countries' sustainability efforts against the United
Nations Sustainable Development Goals (UNSDGs), it's essential to create a
Sustainable Development Index (SDI) using a rigorous MILP model. MILP's
integration captures both discrete and continuous elements of sustainability
metrics, optimizing for goal alignment and exploring solutions to derive optimal
index values for each country. This method lays a solid mathematical groundwork
for the SDI, ensuring objective and reliable assessments of national sustainability
achievements. This SDI should be formulated using a combination of the
parameters and indicators associated with the UNSDGs. By integrating these
indicators using MILP methods, the index can objectively assess each country's
performance. The SDI development process incorporates key aspects of MILP
such as:

i. Indicator Selection: Choosing relevant and measurable indicators from
the global indicator framework that reflect the progress toward each SDG.

ii. Data Collection and Normalization: Gathering and normalizing data
for each indicator to ensure comparability across different countries and
over time.

iii. Weighting of Indicators using MILP: Assigning appropriate weights
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to indicators based on their relative importance to sustainable development.
Utilizing MILP for computing weights for different indicators.

iv. Index Calculation: Computing SDI based on weights and indicator
values

The SDI computed by following this approach can serve as a valuable tool
for policymakers, researchers, and the public, offering a clear and quantifiable
measure of sustainability performance and progress towards the UNSDGs.

4 Methodology
The SDI, calculated using MILP, leverages data from global databases relevant to
the SDGs. To streamline computational demands while ensuring a broad analysis,
one indicator was selected from the available 231 for each SDG, resulting in 17
distinct indicators evaluated worldwide. The HDI and EPI also played roles in
determining the weights for these indicators in the SDI computation. The HDI,
created by the UN Development Programme in 1990, assesses development with
a focus on life expectancy, education, and income rather than merely economic
growth [3]. Conversely, the EPI, developed by Yale University, quantifies the
environmental performance of national policies, focusing on human health and
ecosystem protection, divided into two main categories with various indicators
[4].

For the SDI calculation using MILP, the latest 2021 data was primarily used,
though the most recent data available before 2021 was used for countries lacking
2021 data. Indicator values were normalized between 0 and 1 to standardize
data for weight determination and SDI calculation. Microsoft Excel facilitated
data preparation, while Gurobi Optimization solved the optimization problem
using the Julia programming language. Additionally, HiGHS was employed
to confirm Gurobi's results for consistency. Gurobi Optimization is renowned
for its advanced linear programming solvers, capable of efficiently and robustly
tackling complex optimization challenges. Julia, known for its speed and user-
friendliness, is a high-level, high-performance programming language ideal for
technical computing, including mathematics, statistics, and data analysis tasks
[5].

The MILP model was formulated with an objective function to minimize the
difference between the SDI and a combined measure of HDI and EPI. Constraints
were imposed to ensure the sum of weights equals one and to bound individual
weights within specific ranges to avoid extreme values. The model also incorpo-
rated constraints to ensure that each indicator had a minimal threshold value
to maintain balance. Multiple MILP runs were conducted to refine the index.
Each run adjusted constraints and weights to achieve an optimal balance. The
process included:

• Run 1: Initial MILP with basic constraints, resulting in weights that
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highlighted disparities among indicators.

• Run 2: Excluded duplicate indicators and refined constraints based on
initial findings.

• Run 3: Introduced positive and negative constraints to reflect the intended
impact of each indicator on sustainability.

• Run 4: Added minimal threshold values for all indicators to ensure no
indicator was disregarded.

• Run 5: Further refined to remove redundant constraints, optimizing align-
ment with HDI and EPI.

• Run 6: Final run with constraints limiting extreme values to ensure a
balanced and equitable weighting of indicators

5 Computational Analysis
5.1 Indicator Selection and Data Collection
The data for this report was primarily sourced from the Our World in Data
website, a reputable and comprehensive platform providing global data and
insights aimed at tackling major challenges such as poverty, disease, hunger, and
climate change. It includes a dedicated section for the Sustainable Development
Goals (SDGs), with current data on 232 SDG indicators, and collaborates with
a global network of scholars to offer well-researched and accessible information
[6]. Table 1 shows the indicators considered as representative of the respective
SDGs for the purpose of this report.

Table 1. List of UNSDGs

UNSDG Indicator UNSDG Indicator
i. No Poverty Poverty headcount

ratio
x. Reduced
Inequality

Gini coefficient

ii. Zero Hunger Prevalence of
undernourishment

xi. Sustainable
Cities and
Communities

Access to Clean
Water &
Sanitation

iii. Good
Health and
Well-being

Mortality rate,
under-5

xii.
Responsible
Consumption /
Production

Domestic
material
consumption per
capita

iv. Quality
Education

Literacy rates xiii. Climate
Action

Annual CO2
emissions per
capita

v. Gender
Equality

Gender Inequality
Index

xiv. Life Below
Water

Marine
Protected Area
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vi. Clean
Water and
Sanitation

Access to Clean
Water Access to
Sanitation

xv. Life on
Land

Forest Cover
Ratio

vii. Affordable
and Clean
Energy

Share of renewable
energy in
electricity
consumption

xvi. Peace,
Justice, and
Strong
Institutions

Corruption
Perception Index

viii. Decent
Work and
Economic
Growth

Gross Domestic
Product (GDP)
per capita

xvii.
Partnerships
for the Goal

% of government
expenditure on
education

ix. Industry,
Innovation,
and
Infrastructure

Patent applications
per million people

In addition to the above, other sources of information were used as follows:

• Population of all countries from the World Bank database [7]

• EPI from Yale University’s website [4]

5.2 Data Normalization
The dataset considered for this report has been filtered by making adjustments
for materiality from the global database. In order to conduct meaningful analysis
with reasonable data availability and impact on a larger segment of the world
population, countries with a population of 2.5 million and higher have been
considered for this report. In addition, only for which countries HDI and EPI are
published have been considered. Accordingly, 133 out of 191 countries covering
97.8% of world population have been considered.

Table 2. Dataset considered for creating the network

Number of
countries

Population GNI (2021 / USD
bn)

Aggregate 191 7,872 mn 83,966
Excluded 58 173 mn 2,500
Included 133 7,699 mn 81,466
Percentage included 70% 98% 97%

For undertaking the MILP, one of the key steps involves the normalization of
data by assigning values between 0 and 1. This is achieved using one of several
methods:
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• Min-Max Normalization: This method rescales each indicator
based on relative position between the minimum and maximum
values of the indicator.

• Z-Score Normalization: This involves standardizing the data
points based on their mean and standard deviation, although it
doesn't strictly rescale to 0-1.

• Proportional Scaling: This method involves dividing each value
by the sum of all values in its dataset.

Equation used for computations for this report for Min-Max Normalization:

Normalized V alue x of indicator y = (V alue(x) − Min(y))
(Max(y) − Min(y)) (1)

5.3 Application of MILP
In creating the MILP problem, the primary goal is to develop SDI that evaluates
and compares countries based on their performance towards the UNSDGs.
The MILP model incorporates constraints to ensure that the solution is both
feasible and reflective of real-world conditions. These constraints include the
normalization bounds of the indicators, limitations on the sum of the weights
to prevent skewness, and the integrality constraints for decision variables. The
objective is to find an optimal set of weights for various SDI indicators such that
the resulting index aligns closely with HDI and EPI.

MILP for assigning weights to compute the SDI – Run 1: MILP to
calculate Weights for all Indicators such that the SDI has maximum alignment
with EPI + HDI subject to the following constraints: i. Sum of all weights is 1;
ii. All individual weights are range bound between +1 and -1

Objective: Calculate values for Wn such that

Minimize

133∑
i=0

(SDIi − (HDIi + EPIi))2 , where SDIi =
19∑

n=1
(Wn × In) , where (2)

Wn=Weight for Indicator;In=Value for respective Development Indi-
cator

Subject to the following constraints:

i.
19∑

n=1
Wn = 1;

ii.Wn ≤ 1

iii.Wn ≥ −1
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Summarizing outcome of the MILP solution on Gurobi Optimizer in Table 3.

Table 3. Outcome Summary - Run 1

Dimension: 1 row x 19 columns x 19
non-zeros
Quadratic objective terms: 190

• Objective Values1: 2.4985
• Objective Ratio2: 1.97%

Weights for each indicator based on this optimization run are shown in Table 4.

Table 4. Weights for all indicators as per Table 2– Run 1

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

-0.147 10/ Gini coefficient 0.121

2/ Undernourishment 0.056 11a/ Access to Clean Water -0.020
3/ Mortality rate,
under-5

0.109 11b/ Access to Sanitation -0.050

4/ Literacy rates 0.787 12/ Domestic material
consumed

-0.170

5/ Gender Inequality
Index

-0.398 13/ Annual emissions per
capita

-0.074

6a/ Access to Clean
Water

0.121 14/ EPI -Marine Protected
Area

0.227

6b/ Access to Sanitation -0.020 15/ Forest Cover Ratio 0.052
7/ Share of renewable
energy

-0.008 16/ Corruption Perception
Index

0.610

8/ GDP per capita 0.587 17/ Govt expenditure -
education

-0.070

9/ Patent applications -0.710

Indicators 6a and 6b are common with 11a and 11b, and by including them twice,
the weights could be skewed. In order, the address this, the model optimization
was ran again removing the duplicate entries, and its outcome is summarized in
Table 5

Table 5. Outcome Summary- Run 2

Dimension: 1 row x 17 columns x 17
non-zeros
Quadratic objective terms: 153

• Objective Values:
2.4985

• Objective Ratio:
1.97%

1Objective Value = Sum of least squares as per the objective function
2Objective Ratio = Objective value / Sum all EPI+HDI
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Table 6. Weights for all indicators by excluding duplicate indicators - Run 2

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

-0.147 9/ Patent applications -0.710

2/ Undernourishment 0.056 10/ Gini coefficient 0.121
3/ Mortality rate,
under-5

0.109 12/ Domestic material
consumed

-0.170

4/ Literacy rates 0.787 13/ Annual emissions per
capita

-0.074

5/ Gender Inequality
Index

-0.398 14/ EPI -Marine Protected
Area

0.227

6a/ Access to Clean
Water

0.121 15/ Forest Cover Ratio 0.052

6b/ Access to Sanitation -0.020 16/ Corruption Perception
Index

0.610

7/ Share of renewable
energy

-0.008 17/ Govt expenditure -
education

-0.070

8/ GDP per capita 0.587

Fig. 1. Weights for indicators considered as per the MILP Run 2

Table 6 and Figure 1 illustrate that the MILP model produces both positive and
negative weights based on the defined constraints, affecting the SDI values accord-
ingly. However, this approach might not accurately reflect the intended impact of
certain indicators on sustainability. For example, Patent Applications and Access
to Sanitation should positively influence the SDI, whereas Undernourishment
and Infant Mortality Rate should detract from it. This discrepancy suggests a
need to refine the MILP model by introducing additional constraints tailored to
the specific nature of each indicator. Table 7 categorizes each of the indicators
based on its positive or negative contribution to sustainable development.
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Table 7. Categorization of indicators as sustainability positive or negative

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

Negative 9/ Patent applications Positive

2/ Undernourishment Negative 10/ Gini coefficient Negative
3/ Mortality rate,
under-5

Negative 12/ Domestic material
consumed

Positive

4/ Literacy rates Positive 13/ Annual emissions per
capita

Negative

5/ Gender Inequality
Index

Negative 14/ EPI -Marine Protected
Area

Positive

6a/ Access to Clean
Water

Positive 15/ Forest Cover Ratio Positive

6b/ Access to Sanitation Positive 16/ Corruption Perception
Index

Negative

7/ Share of renewable
energy

Positive 17/ Govt expenditure -
education

Positive

8/ GDP per capita Positive

The MILP problem restated to include constraints based on the above catego-
rization of indicators is presented hereunder.

Restated MILP for assigning weights with positive/negative con-
straints – Run 3: MILP to calculate Weights for all Indicators such that
the SDI has maximum alignment with EPI + HDI subject to the following
constraints: i. Sum of all weights is 1; ii. Individual weights are range bound;
iii. Negative and Positive values based on the Indicator

Objective: Calculate values for Wn such that

Minimize
∑133

i=0 (SDIi − (HDIi + EPIi))2
, where SDIi =

∑17
n=1 (Wn × In) , where

(3)

Wn = Weight for Indicator n; In = Value for respective Development
Indicator

Subject to the following constraints:

i.

17∑
n=1

Wn = 1;

ii. If ln = Positive, 0 ≤ Wn ≤ 1

iii. If ln = Negative, 0 ≥ Wn ≥ 1

The MILP generates revised weights are shown in Table 9 and Figure 2.
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Table 8. Outcome Summary- Run 3

Objective Values: 4.44513 Objective Ratio: 3.50%

Table 9. Weights for all indicators with positive-negative constraints - Run 3

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

0.0000 9/ Patent applications -0.710

2/ Undernourishment -0.1379 10/ Gini coefficient 0.121
3/ Mortality rate,
under-5

0.0000 12/ Domestic material
consumed

-0.170

4/ Literacy rates 0.9656 13/ Annual emissions per
capita

-0.074

5/ Gender Inequality
Index

-0.5210 14/ EPI -Marine Protected
Area

0.227

6a/ Access to Clean
Water

0.3165 15/ Forest Cover Ratio 0.052

6b/ Access to
Sanitation

0.0000 16/ Corruption Perception
Index

0.610

7/ Renewable energy 0.0000 17/ Govt expenditure -
education

-0.070

8/ GDP per capita 0.5451

Fig. 2. Weights for Indicators with positive-negative constraints - Run 3

This MILP run has 8 out of 17 indicators with 0 value. The model is thus
disregarding several variables. To have a balanced view, the model should be
constrained to ensure that each indicator has a certain minimal value. Accord-
ingly, the MILP model further revised to include constraints based minimal value
for all indicators is as follows.
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Restated MILP for assigning weights with threshold value for all
Indicators – Run 4: MILP to calculate Weights such that SDI has alignment
with EPI + HDI subject to the following: i. Sum of all weights is 1; ii. All
weights range bound; iii. Negative and Positive values based on Indicator; and
iv. Minimal threshold values for all Indicators.

Objective: Calculate values for Wn such that

Minimize
∑133

i=0 (SDIi − (HDIi + EPIi))2
, where SDIi =

∑17
n=1 (Wn × In) , where

(4)

Wn = Weight for Indicator n; In = Value for respective Development
Indicator

Subject to the following constraints:

i.
17∑

n=1
Wn = 1;

ii. If ln > 0, then 0.05 ≤ Wn ≤ 1

iii. If ln < 0, then − 0.05 ≥ Wn ≥ −1

The MILP generated revised weights are shown in Table 11 and Figure 3.

Table 10. Outcome Summary- Run 4

Objective Values: 5.0393 Objective Ratio: 3.97%

Table 11. Weights for all indicators with threshold value constraints - Run 4

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

-0.0500 9/ Patent applications 0.0500

2/ Undernourishment -0.1404 10/ Gini coefficient -0.0737
3/ Mortality rate,
under-5

-0.0500 12/ Domestic material
consumed

0.0890

4/ Literacy rates 0.9388 13/ Annual emissions per
capita

-0.4773

5/ Gender Inequality
Index

-0.4764 14/ EPI -Marine Protected
Area

0.3104

6a/ Access to Clean
Water

0.2717 15/ Forest Cover Ratio 0.0500

6b/ Access to
Sanitation

0.0500 16/ Corruption Perception
Index

-0.0500

7/ Renewable energy 0.0500 17/ Govt expenditure -
education

0.0500
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8/ GDP per capita 0.4580

Figure 3. Weights for Indicators with threshold value constraints - Run 4

As observed in Table 10, the Objective Value and Objective Value Ratio have
nearly doubled as compared to Run 2, making the outcome suboptimal. This is
because multiple constraints have been added to the function. The MILP can
be further modified to exclude constraints which may be redundant as shown
hereunder.

Restated MILP for assigning weights after removing redundant con-
straints– Run 5: MILP to calculate Weights for all Indicators such that the SDI
has maximum alignment with EPI + HDI subject to the following constraints:
i. Negative and Positive values based on category of the Indicator; ii. Minimal
threshold values for all Indicators

Objective: Calculate values for Wn such that

Minimize
∑133

i=0 (SDIi − (HDIi + EPIi))2
, where SDIi =

∑17
n=1 (Wn × In) , where

(5)

Wn = Weight for Indicator n; In = Value for respective Development
Indicator

Subject to the following constraints:

i. If ln > 0, then 0.05 ≤ Wn

ii. If ln < 0, then − 0.05 ≥ Wn

The MILP generated revised weights are shown in Table 13 and Figure 4.
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Table 12. Outcome Summary- Run 5

Objective Values: 2.92 Objective Ratio: 2.31%

Table 13. Weights for all indicators after removing redundant constraints -
Run 5

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

-0.0500 9/ Patent applications 0.0500

2/ Undernourishment -0.0500 10/ Gini coefficient -0.0500
3/ Mortality rate,
under-5

-0.0500 12/ Domestic material
consumed

0.0500

4/ Literacy rates 0.6744 13/ Annual emissions per
capita

-0.2352

5/ Gender Inequality
Index

-0.2084 14/ EPI -Marine Protected
Area

0.2705

6a/ Access to Clean
Water

0.2724 15/ Forest Cover Ratio 0.0600

6b/ Access to
Sanitation

0.0500 16/ Corruption Perception
Index

-0.0500

7/ Renewable energy 0.0500 17/ Govt expenditure -
education

0.0500

8/ GDP per capita 2.0261

Figure 4. Weights for Indicators after removing redundant constraints - Run 5

The outcome of this MILP run 5 considers all the parameters almost equitably,
with extra emphasis on a few indicators on either side. For example, GDP per
capita and Literacy rates are distinctly much higher than the other positive
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indicators. On the other side, Gender Inequality and CO2 emission are the most
negative indicators. One thing that comes out starkly is the significant disparity
of weights of indicators, especially on the positive side.

Table 14. Range of weights computed in Run 5

Positive Indicators Negative Indicators
Lowest / Average / Highest
+ve Weight

Lowest / Average / Highest
-ve Weight

Calculated Values 0.0500 / 0.3553 / 2.0261 -0.0500 / -0.0991 / -0.2352
Ratio
Highest/Lowest

40.5x 4.7x

Ratio:
Highest/Average

5.7x 2.4x

Such extreme values give extra emphasis on few indicators at the cost of ignoring
the others. Hence, it would be pertinent to optimize the differences of weights
across indicators. The MILP can be further modified to include constraints
which restrict extreme values as shown below.

Restated MILP for assigning weights to include constraints for re-
stricting extremities – Run 6: MILP to calculate Weights for all Indicators
such that the SDI has maximum alignment with EPI + HDI subject to the
following constraints: i. Negative and Positive values based on category of the
Indicator; ii. Minimal threshold values for all Indicators; iii. Maximum value for
all Indicators 10x the minimum threshold value

Objective: Calculate values for Wn such that

Minimize
∑133

i=0 (SDIi − (HDIi + EPIi))2
, where SDIi =

∑17
n=1 (Wn × In) , where

(6)

Wn = Weight for Indicator n; In = Value for respective Development
Indicator

Subject to the following constraints:

i. If ln > 0, then 0.05 ≤ Wn ≤ 0.50

ii. If ln < 0, then − 0.05 ≥ Wn ≥ −0.50

The MILP generated revised weights after including the constraints as above,
are shown in Table 16 and Figure 5.

Table 15. Outcome Summary- Run 6

Objective Values: 4.2577 Objective Ratio: 3.36%
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Table 16. Weights for indicators after adding constraints to limit
extremities-Run 6

SDG / Indicator Weight SDG / Indicator Weight
1/ Poverty headcount
ratio

-0.0500 9/ Patent applications 0.4162

2/ Undernourishment -0.0500 10/ Gini coefficient -0.0500
3/ Mortality rate,
under-5

-0.0500 12/ Domestic material
consumed

0.2143

4/ Literacy rates 0.5000 13/ Annual emissions per
capita

-0.0500

5/ Gender Inequality
Index

-0.3404 14/ EPI -Marine Protected
Area

0.3441

6a/ Access to Clean
Water

0.4738 15/ Forest Cover Ratio 0.0917

6b/ Access to
Sanitation

0.0500 16/ Corruption Perception
Index

-0.0500

7/ Renewable energy 0.1119 17/ Govt expenditure -
education

0.0500

8/ GDP per capita 0.5000

Figure 5: Weights for Indicators after adding constraints to limit extremities-
Run 6

Summarizing outcomes of Runs 1 to 6 in Table 17 for a comparative assessment
of each and select the one with optimum values for weights of indicators.
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Table 17. Summary of MILP optimization runs

From Table 17, Run 6 comes across as one that gives an optimal solution. While
the Objective Value is moderately high at 4.25, the value is not very significant
since the objective ratio is reasonably low at 3.36%. All indicators have at the
very least, a threshold value and extreme values have been restricted. Further,
this run considers all variables equitably with average modulus value of 0.18 and
standard deviation of 0.20.

5.4 Creating the SDI
The SDI for all countries based on the weights listed in Table 16 is presented in
below in Table 18.

Table 18. SDI based on the Weights from MILP Run 6

Place SDI | EPI+HDI
Finland 1.7 | 1.94
Japan 1.7 | 1.58
Sweden 1.69 | 1.89
Denmark 1.66 | 1.98
Norway 1.66 | 1.68
Australia 1.63 | 1.68
New Zealand 1.62 | 1.6
U.S.A. 1.61 | 1.47
Canada 1.59 | 1.48
Germany 1.58 | 1.7
Netherlands 1.56 | 1.7
Chile 1.55 | 1.28
Belgium 1.54 | 1.62
Lithuania 1.52 | 1.47
France 1.5 | 1.64
U.K. 1.49 | 1.94
Spain 1.48 | 1.54
Poland 1.46 | 1.39
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Place SDI | EPI+HDI
Switzerland 1.45 | 1.8
U.A.E. 1.44 | 1.48
Austria 1.41 | 1.73
Croatia 1.4 | 1.52
Italy 1.38 | 1.54
Brazil 1.37 | 1.05
Romania 1.36 | 1.38
Ireland 1.34 | 1.62
Singapore 1.32 | 1.5
Mexico 1.29 | 1.09
Portugal 1.28 | 1.36
Panama 1.28 | 1.26
Ecuador 1.26 | 1.08
Colombia 1.26 | 1.03
Qatar 1.24 | 1.05
Czechia 1.24 | 1.57
Greece 1.23 | 1.5
Ukraine 1.23 | 1.19
Bulgaria 1.22 | 1.27
Slovakia 1.22 | 1.5
Belarus 1.2 | 1.23
Dominica 1.2 | 1.05
Kazakhstan 1.19 | 1.11
Hungary 1.18 | 1.41
Bosnia 1.18 | 1.03
Costa Rica 1.18 | 1.2
Israel 1.18 | 1.42
Serbia 1.17 | 1.14
Armenia 1.16 | 1.14
Turkiye 1.14 | 0.91
Paraguay 1.14 | 0.94
Georgia 1.13 | 1.06
Albania 1.13 | 1.19
Argentina 1.13 | 1.17
China 1.13 | 0.82
Malaysia 1.12 | 0.99
South Africa 1.11 | 0.87
Thailand 1.1 | 1.04
Turkmenistan 1.1 | 0.92
Uruguay 1.09 | 1.04
Mongolia 1.07 | 0.79
Kyrgyzstan 1.07 | 0.81
Russian Fed. 1.06 | 1.07
Saudi Arabia 1.05 | 1.17
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Place SDI | EPI+HDI
Azerbaijan 1.05 | 0.95
Uzbekistan 1.05 | 0.91
Moldova 1.05 | 1.06
Kuwait 1 | 1.17
Honduras 1 | 0.7
Bolivia 0.99 | 0.88
Tajikistan 0.98 | 0.82
Vietnam 0.98 | 0.56
Cuba 0.97 | 1.14
Jordan 0.95 | 0.99
Peru 0.95 | 1
Venezuela 0.93 | 0.99
Indonesia 0.92 | 0.71
El Salvador 0.91 | 0.87
Lao PDR 0.88 | 0.58
Philippines 0.88 | 0.71
Tunisia 0.87 | 0.96
Oman 0.86 | 0.94
Sri Lanka 0.84 | 0.95
Botswana 0.84 | 1.12
Nepal 0.84 | 0.53
Jamaica 0.83 | 1.01
Iraq 0.82 | 0.66
Lebanon 0.81 | 0.77
Namibia 0.8 | 0.93
Iran 0.8 | 0.93
Egypt 0.77 | 0.87
Guatemala 0.76 | 0.56
Nicaragua 0.73 | 0.8
Myanmar 0.72 | 0.34
Algeria 0.69 | 0.8
Morocco 0.66 | 0.67
Bangladesh 0.65 | 0.54
Sudan 0.64 | 0.35
Cambodia 0.63 | 0.54
Zambia 0.62 | 0.63
India 0.61 | 0.42
Congo 0.6 | 0.67
Ghana 0.59 | 0.57
Zimbabwe 0.57 | 0.81
Cameroon 0.56 | 0.51
Burundi 0.54 | 0.25
Malawi 0.53 | 0.58
Senegal 0.52 | 0.46
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Place SDI | EPI+HDI
Pakistan 0.5 | 0.36
Rwanda 0.5 | 0.48
Angola 0.48 | 0.53
Gambia 0.47 | 0.48
Togo 0.45 | 0.51
Uganda 0.45 | 0.52
Kenya 0.44 | 0.52
Nigeria 0.43 | 0.41
DR of Congo 0.41 | 0.45
Tanzania 0.41 | 0.53
Mali 0.4 | 0.22
Afghanistan 0.38 | 0.57
Ethiopia 0.33 | 0.4
Mozambique 0.32 | 0.31
Liberia 0.31 | 0.25
Guinea 0.3 | 0.34
Mauritania 0.29 | 0.44
Sierra Leone 0.27 | 0.38
Benin 0.26 | 0.41
Cote d'Ivoire 0.25 | 0.51
Haiti 0.24 | 0.37
Madagascar 0.19 | 0.34
P. N. Guinea 0.13 | 0.39
Burkina Faso 0.1 | 0.38
Chad 0.06 | 0.16
C African Rep 0.03 | 0.46
Niger -0.03 | 0.33

Table 19. Countries with Top 10 & Bottom 10 SDI

Top 10 SDI
SDI
Rank

EPI+
HDI

EPI+HDI
Rank

Bottom
10 SDI

SDI
Rank

EPI+
HDI

EPI+HDI
Rank

Finland 1.70 1 1.94 3 Niger -
0.03

133 0.33 128

Japan 1.70 2 1.58 15 C
African
Rep

0.03 132 0.46 112

Sweden 1.69 3 1.89 4 Chad 0.06 131 0.16 133
Denmark 1.66 4 1.98 1 Burkina

Faso
0.10 130 0.38 121

Norway 1.66 5 1.68 9 PN
Guinea

0.13 129 0.39 119

Australia 1.63 6 1.68 10 Madagascar0.19 128 0.34 126
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Top 10 SDI
SDI
Rank

EPI+
HDI

EPI+HDI
Rank

Bottom
10 SDI

SDI
Rank

EPI+
HDI

EPI+HDI
Rank

New
Zealand

1.62 7 1.60 14 Haiti 0.24 127 0.37 122

United
States

1.61 8 1.47 26 Cote
d'Ivoire

0.25 126 0.51 108

Canada 1.59 9 1.48 23 Benin 0.26 125 0.41 116
Germany 1.58 10 1.70 8 Sierra

Leone
0.27 124 0.38 120

The above data shows several top ranked countries as per SDI were lower on
EPI+HDI ranking, and conversely some of the countries in the bottom 10 ranked
marginally better on EPI+HDI ranking. These positions seem to have changed
because the SDI considers additional indicators listed below in Table 20 which
are not included either in EPI or HDI which could account for the swing in the
relative ranking of countries.

Table 20. Indicators not included in EPI or HDI, but included for SDI

SDG / Indicator Weight SDG / Indicator Weight
1 /Poverty ratio -0.05 10 / Gini coefficient -0.05
2 / Undernourishment -0.05 12 / Domestic material

consumption
0.21

5 / Gender Inequality
Index

-0.34 16 / Corruption Perception
Index

-0.05

9 / Patent applications 0.42 17 / Expenditure on
education

0.05

5.5 Results
The MILP methodology significantly advanced the development of the SDI,
offering deep insights into countries' progress toward the UNSDGs. By applying
distinct weights to 17 key indicators, this approach effectively quantified national
achievements, emphasizing the critical role of each indicator in the sustain-
ability framework. This process resulted in a ranking system that highlighted
sustainability leaders and those countries needing to direct more attention to
specific SDGs. Moreover, the SDI facilitated comparisons with other indices like
the HDI and EPI, uncovering unique insights and differences that emphasize
the SDI's all-encompassing approach to sustainable development. A sensitivity
analysis pinpointed indicators with substantial effects on the overall SDI score,
providing policymakers with actionable information to enhance performance in
areas lagging behind. Altogether, MILP-based SDI emerges as a nuanced and
quantifiable tool for assessing sustainable development.
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6 Conclusions & Future Works
The SDI's development through MILP marks a significant step in accurately
assessing global progress toward the UNSDGs, leveraging MILP to refine and
weight sustainability indicators comprehensively. This process analyzed 17 key
indicators, each linked to a specific UNSDG, to highlight their roles and global
sustainability impact. The SDI offers a nuanced view of global sustainability
efforts, identifying leaders in certain SDGs and areas needing more focus. The
MILP's meticulous approach ensures the SDI's reliability and relevance, providing
a foundation for future evaluations and serving as a crucial tool for policymakers
and researchers. This facilitates targeted sustainable development strategies
and further studies. The research promotes a data-driven approach to enhance
global sustainability efforts, making the MILP-based SDI a pivotal contribution
to sustainable development goals.

Future research will focus on enhancing SDI with real-time, specific data, and dy-
namic modeling, involving advanced techniques like machine learning. Engaging
with stakeholders for model validation and conducting longitudinal studies will
track the SDI's long-term impact, providing a comprehensive view of sustainable
development progress and areas for improvement. This effort positions the MILP
application in creating the SDI as a significant advancement towards sustainable
development, offering a detailed, adaptable framework for navigating evolving
sustainability goals and data complexities, guiding future actions and research
in this field.

Study Limitations: SDI's accuracy is contingent on the quality of data.
In some cases, data might be outdated, incomplete, or inconsistent across
different countries, potentially affecting the robustness of the index. Further, the
process of assigning weights to various indicators, despite being systematic, might
not fully reflect the complex interdependencies and varied impacts of different
sustainability aspects. The SDI may not adequately account for regional and
cultural differences in sustainability practices and priorities. This could lead to
oversimplification. The long-term validity of the SDI is yet to be tested.
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Abstract. We address the question of multi-task algorithm selection in
combinatorial optimisation domains. This is motivated by a desire to
simplify the algorithm-selection pipeline by developing a more general
classifier that does not require specialised information per domain, and
the potential for transfer learning. A minimum requirement to achieve
this is to find a common representation for describing instances from
multiple domains. We assess the strengths and weaknesses of three can-
didate representations (text, images and graphs) which can all be used
to describe three different application domains. Two setups are consid-
ered: single-task selection where one classifier is trained per domain, each
using the same representation, and multi-task selection where a single
classifier is trained with data from all three domains to output the best
solver per instance. We find that the domain-agnostic representations
perform comparably with domain-specific feature-based classifiers with
the benefit of providing a generic representation that does not require
feature identification or computation, and could be extended to addi-
tional domains in future.

Keywords: Algorithm Selection, Multi-Task Learning, Combinatorial
Optimisation.

1 Introduction

It is well known that for most combinatorial optimisation problems for which
there are multiple solvers available, no single algorithm will perform best across
all instances. Any portfolio of applicable solvers will exhibit performance com-
plementarity, thus giving rise to the per-instance algorithm-selection problem.
Although this was first articulated by Rice in 1976 [22], research in the field
has accelerated over recent years, driven by advances in machine-learning, with
the state-of-the-art summarised in a recent survey paper [12]. From the latter,
it is clear that the most typical approach is to train one model per domain
on a set of representative instances to predict the best solver from a portfolio.
However, many practical domains falling under the umbrella of combinatorial



optimisation share characteristics, e.g. routing, scheduling and assignment are
essentially ordering problems. This raises the possibility that knowledge encap-
sulated in different (but related) domains could be exploited to improve selection
in per-instance algorithm selection. Multi-task learning (MTL) is of course well
studied in the field of machine learning, specifically for classification (see [28])
but to the best of our knowledge has not been addressed in the context of algo-
rithm selection. It has several potential benefits: it enables a system to handle
multiple existing tasks with minimum software engineering effort and facilitates
the possibility of being able to handle unanticipated tasks (i.e. new domains)
that appear downstream (assuming they can be manipulated into the chosen
representation).
A minimal requirement for multi-tasking is a unified (i.e. domain-agnostic) rep-
resentation [9]. We therefore address the design of this component of an MTL
system: how to find a representation that is common to multiple domains, so
that in future, existing algorithmic ‘machinery’ can be reused without further
engineering by domain experts. A unified representation for all domains has two
benefits. First, it avoids having to define domain-specific features for every new
domain in order to train classifiers. Second, with respect to a classifier, a single
fixed-architecture neural network can be trained that accepts instances of dif-
ferent length and from multiple domains. Hence, there is no need to re-engineer
the solving pipeline if new domains appear: instances from the new domain need
only to be translated into the representation used. We consider three candidate
domain-agnostic representations — text, images and graphs — each of which can
be used to directly describe instances from multiple domains to train an algo-
rithm selector. Three domains are used as a test-bed: TSP, knapsack, and graph
colouring. We evaluate the strengths and weaknesses of the candidate represen-
tations in two pipelines. The first has two stages: given a single representation
r a classifier is trained to perform domain recognition on the presented instance
(i.e. output the domain). The instance is then passed to one of three specialised
classifiers that outputs the best solver: crucially, each domain-specific classifier
uses the same input representation r. This is denoted single-task selection. Sec-
ond, we compare these results to a more streamlined pipeline in which a single
multi-task classifier takes as input an instance from any of three domains (all
represented using the same representation r) and outputs the best solver for that
instance.
Results demonstrate that it is possible to design a single-task and multi-task sys-
tem to handle a multi-domain problem using a single representation. We show
that in multi-task settings, a trained algorithm selector never selects an algo-
rithm from the incorrect domain for two of the three representations considered
— even though domain labels are not provided. Furthermore, we show that in the
case of image-based representation the drop in performance is below 1% when
going from the single-task to multi-task settings. We therefore demonstrate the
potential for cross-domain learning in minimising engineering effort, and propose
that this lays a strong foundation for future development of a system that also
supports more complex scenarios where new tasks appear sequentially.



2 Related Work

The vast majority of previous work in per-instance algorithm-selection relies
on extracting domain-specific features from an instance before training a se-
lector to map features to a solver [13] — a process which requires significant
domain knowledge and can also be computationally costly [24]. To circumvent
this issue, a recent line of work has begun to emerge that implements algorithm
selection using feature-free methods, i.e. directly passing a description of an in-
stance to a classifier [2,24,30,20,3]. Many of these approaches have been inspired
by the success of deep learning models, particularly in the areas of computer
vision and natural language processing [14]. For example, Alissa et al [2] use
a text-based representation in conjunction with an Long-Short-Term-Memory
(LSTM) network in bin-packing, showing it can outperform feature-based ap-
proaches. Feature-free approaches using image-based input tend to dominate the
literature, exploiting deep convolutional neural networks as selectors. This is
particularly prevalent in the TSP domain [18,24,30] due to the natural place-
ment of coordinates on a 2-d map. Various approaches to image transformation
are explored in order to improve classification accuracy, with results indicating
the potential of the feature-free direction using images in algorithm selection
tasks [24,30]. In [16], textual descriptions of SAT instances are converted to a
grey-scale images and used to train an algorithm-selector. Outside of algorithm
selection Graph-Based neural networks (GNN) have been shown to have general
applicability [26] in classification tasks, with applications ranging from social
nets, to computer vision to text classification. For example, Richter et. al. use
a graph representation of programs when applying algorithm selection in the
domain of software-validation [23].

Most algorithm selection is performed on a per-instance basis [12], where
the instances belong to a single domain. In the field of machine-learning, Multi-
Task Learning (MTL) focuses on learning multiple tasks simultaneously [28],
usually by combining or blending features into a single input. Much of the work
in this area focuses on leveraging knowledge from similar domains to improve
performance. However, a more compelling need derives from the necessity to
deal with additional, unanticipated tasks following training. For example, in the
context of multi-task learning, [29] designed a multi-task learning framework
to effectively learn robust feature representations by jointly optimising coarse-
grained, fine-grained and ultra-fine-grained image classification tasks, reporting
that the multi-task classifier outperformed the state-of-the-art.

This paper attempts to advance the field of multi-task algorithm selection
by evaluating the strengths and weaknesses of three domain-agnostic represen-
tations: specifically, we compare images, text and graphs as candidate represen-
tations, drawing on previous literature in feature-free algorithm selection.

3 Representations

Recall that the goal of this study is to assess the strengths and weaknesses of
three candidate representations in being able to represent instances from multiple



domains to conduct algorithm selection. The candidates are chosen (text, images,
graphs) based on a review of the related literature. These are described below.

3.1 Text

The simplest of the three representations chosen is that no transformation of
raw data is required: each instance (irrespective of the domain) is described in a
comma-separated variable file and is therefore simply a sequence of characters.
For TSP instances, one pair of coordinates is listed per row. For knapsack, a
single value that specifies the size of the container is followed by rows containing
pairs of profit/weights. For graph colouring, instances are described by edge lists
in the form of pairs of values. None of the files contain meta-information that
could potentially provide information to the classifier about the domain.

Note that for each of the domains, the information describing the instances
(e.g. city coordinates) can be listed in the file in any order without altering
the instance itself. However, the sequencing of characters might well have an
influence on the behaviour of a text-based classifier depending on the type of
machine-learning model used. For simplicity, we only consider a single description
of each instance which has no explicit ordering of data imposed on it, and leave
it to further work to understand whether training a classifier with versions of
the same file containing different orderings is beneficial.

The limits of this representation depend on the number of tokens or charac-
ters accepted by the machine learning model. If one were to continue increasing
the size of the instances beyond a certain point some special input concatenation
method must be implemented in order to process larger instances.

3.2 Images

A transformation is required to turn the natural text-based description of an
instance into an image. For TSP, the coordinates of each city are plotted as
points. For knapsack, each item was plotted as a point, using the profit and
weight of the item as its coordinates. The size of the knapsack was normalised to
fall in the range of the items profit and weight values and plotted as an individual
point. For graph colouring, the graph of each instance was transformed to an
adjacency matrix of 0 and 1 values for adjacent/non-adjacent vertices.

All the images in all domains were transformed to greyscale with a resolution
equal to 8 dpi (for graph colouring, the adjacency matrix is first transformed by
converting 0 and 1 values to 0 and 255). The size of the images for all domains
was set to 32× 32, after a brief preliminary experimentation with both smaller
and larger sizes. Examples of images produced from each domain are shown in
Figure 1.

As discussed above with respect to the text representation, multiple images
can be created for a single instance by rotating/flipping the original image.
Again, for simplicity we restrict our transformation to creating a single image
per instance from the textual description.



The input size of this representation is fixed regardless of the size of the in-
stances, this means that arbitrary size instances can be processed by the machine
learning model. However, beyond a certain point the lossy nature of the trans-
formation would blur almost all information requiring higher resolution images
and neural networks.

(a) TSP (b) GC (c) KP

Fig. 1. Grey scale images of a selected instance from each domain. The TSP image uses
the locations of the cities. The graph colouring image is a conversion of the correspond-
ing adjacency matrix of the instance; a point indicates the presence of a connection.
The knapsack image uses weight and profit values.

3.3 Graphs

All three domains can also be transformed into a graph representation with some
manipulation.

TSP: A graph is constructed with cities as vertices. The coordinates of each
city are assigned to each respective vertex feature vector. The TSP is naturally
a complete graph with edge lengths equal to the Euclidean distance between two
nodes. For simplicity instead of using all the edges we connect only the edges of
5 nearest neighbours for each vertex, as per previous literature [24], significantly
decreasing the overall size of the graph. Knapsack: Each object is represented
as a vertex, with a feature vector comprising the normalised profit and weight
of the object. The knapsack is also represented as a vertex. Its associated fea-
ture vector contains the capacity plus an extra 0 used as padding to keep the
dimensionality of knapsack and objects equivalent. An edge is added between
each object and the knapsack. Graph Colouring: this is straightforward as the
domain is naturally a graph. Each vertex is assigned its degree as its feature
vector. Edges are added as specified by edge list in the problem description. An
extra 0 is added to the vertices feature vector as padding in the experiments
that consider all the domains at once to keep the dimensionality equal among
all domains. Examples of graphs produced from each domain are shown in Fig-
ure 2. This representation is lossless therefore beyond a certain instance size the
memory required to process the input will become too large to be processed.



In order to scale beyond that point some graph simplification or segmentation
would need to be implemented.

(a) TSP (b) GC (c) KP

Fig. 2. Graphs generated from a selected instance from each domain. For TSP the plot
retains the coordinates of the points. Otherwise a force based layout is used to plot the
position of the vertices and highlight structures.

3.4 Feature-based representations

In order to provide a baseline to compare the use of domain-agnostic represen-
tations to domain-specific representations, we extract a set of common features
for each domain and use these to train a random forest classifier as a baseline.
Recall however the disadvantages of defining problem domain specific features
described earlier in Section 2.

For TSP, we use the 64 features defined in the TSPMETA R package,3 which
describe the geometrical features of a TSP instance. For the knapsack, we used
the feature extraction code supplied by MATILDA4 which is implemented in
Matlab and extracts 44 features (see [25]). For graph colouring, we also used the
feature set (3 features) proposed by MATILDA, implementing them using the
Python Networkx package [8] for networks and graph processing. The reader is
referred to these publications for a detailed description of each feature.

4 Datasets

We reiterate that the goal is to evaluate the potential of each representation
chosen to represent multiple domains, rather than develop state-of-the-art al-
gorithm selectors or solvers. We opt to work with two solvers for each domain
that return high-quality solutions quickly, and use balanced instance data-sets
in which 50% of instances are best solved by each solver, in order to craft a
discriminating instance set [1,7] to simplify training. A large set of instances is
required per domain to train networks: we deemed it important for instances to
vary in size to ensure generalisation and real-world applicability. While for each

3 https://github.on.publication
4 https://matilda.unimelb.edu.au/matilda/



domain there are many benchmark instances suites available both for TSP and
GC, they do not meet all of the above criteria (e.g. TSP benchmarks often use
state-of-the-art stochastic solvers with long running times [24], contain instances
of the same size [24] or are too few in number and too large in size[21]). Hence,
we use a mix of instance-generation and collation as described below per domain.
All instances are provided in the accompanying github repository.5

4.1 Instance Generation

Graph Colouring - we create instances of graphs with n vertices (10 ≤ n ≤
200). For each value of n 1K graphs are created, each with a uniform random
number of edges between n and (n2)/2. Extreme values that could produce
empty or complete graphs are avoided as they would both be trivial to solve.
Disjoint vertices and self-loops are removed if present.

TSP - to generate instances with varied structure we use the following
method: c clusters are identified, where c is a random number in the range (1,10),
and the centre of each is drawn from a uniform random distribution. Next, a
distribution is randomly chosen to generate cities per cluster. Four distributions
are considered: a 2D Gaussian distribution, a 2d grid, a streak of points in a
line and a spiral. The first three distributions are taken from the work in [4]
on evolving TSP instances. We add a spiral distribution as they are common
in the ML literature and difficult to recognise using naive linear classifiers. The
coordinates of n cities are generated, by drawing n/c samples from the chosen
distribution centered on each cluster. 50K instances were created and solved.

Knapsack - for this domain, a dataset that met the criteria outlined above
was available from the literature. Instances were collated from two sources: (1)
the Pisinger repository6, which includes varied instances in size and profit/weight
coefficients [19]. 8,000 instances from the large, small coefficient, and hard in-
stances ranging in size between 20-5,000 items were selected. (2) 4,000 instances
(with fixed size 1,000 items) downloaded from MATILDA: see [25] for a detailed
description of these instances.

4.2 Solvers

Solver selection is guided by the criteria in Section 4: to use solvers that produce
high-quality results quickly, that provide differential performance in different
regions of the instance space and have complementary performances with re-
spect to criteria relevant to the real world (e.g. speed or quality). All solvers
selected are deterministic and do not require extensive computation: thousands
of instances from each domain could be solved in less than two hours. For the
range of knapsack sizes in the instance set, several solvers are available that
solve to optimality in milli-second timescales. We select the ExpKnap (EXP)

5 GitHub supplied on acceptance
6 available from: http://hjemmesider.diku.dk/ pisinger/codes.html



algorithm (based on branch and bound) and the Combo (COM) method (a dy-
namic programming approach) [17]. These have also been used in the MATILDA
methodology for instance-space generation and algorithm selection of the knap-
sack domain [25]. For TSP, two constructive heuristics are chosen for their
ability to quickly generate solutions. The Greedy heuristic (GRD) [11] is a well-
known constructive heuristic algorithm for solving the TSP, in which the tour
is constructed by adding the node that provides the minimal tour length and
provides very fast solutions. The Christofides algorithm (CHR) [6] is an approxi-
mation algorithm based on minimum spanning trees. While slower than Greedy,
it provides improved solutions.

As the graph-colouring instances are relatively small we also solve via con-
structive heuristics. The Largest First heuristic (LF) [15] is a well-known heuris-
tic that assigns the colours by constructing each colour class one at a time.
DSATUR(DST) [5] is a greedy algorithm based on the saturation degree of the
vertices.

4.3 Instance Labelling

Instances were labelled using a method that accounted for both solving time
and objective value (as both are relevant criteria from a practical perspective)
as follows.

– Knapsack: All instances are solved to optimality. Those that required more
than 15 seconds to solve (a criteria set by MATILDA) were excluded. The
winner is then determined by solving time only.

– TSP: a cut-off time for solving was set, equal to the average of the recorded
times to solve all instances using the slower heuristic method Christofides
(0.095 seconds). If only one algorithm solves the instance within this time it
is labelled as the winner; otherwise, the winner is the algorithm that provides
the shortest tour length.

– Graph colouring: the algorithm that uses the fewest colours wins, with time
used to break ties.

The instances generated by the methods described in Section 4.1 were solved
by both solvers in each domain. 2,500 instances of each label were then ran-
domly selected for each domain, resulting in a balanced set of 5,000 instances
per domain.

Figures in 3 illustrate the performance of the solvers per domain on the
5,000 instances selected for each of them. For TSP/GC, this is shown on two
plots from the perspective of solving time and objective value, to illustrate the
diverse behaviour of each heuristic and how they occupy different regions of
the performance space. In the case of TSP instances we highlight in purple the
instances that are won by the Greedy heuristic due to the timeout of the CHR
heuristic as opposed to the length of the tour. In the case of KP instances we
plot the time of each heuristic against each other as this is the only criteria used
to rank them.
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Fig. 3. Each dot is an instance coloured and positioned based on the winning solver’s
performance. Left : TSP instances. Purple dots win by timeout of the other solver.
Centre: GC instances. Right : KP instances.

5 Experimental Method

Figure 4 summarises the approaches used to investigate the relative performance
of each representation in single-task and multi-task classification. For experi-
ments using image and text representations as input, classifiers were developed
using AutoKeras [10], an AutoML Python framework based on Keras. The frame-
work provides a set of well-established architectures and parameters from the
literature for both image and text recognition tasks, saving considerable effort
in selecting architectures and parameter tuning. The specific architectures used
are available via GitHub previously mentioned. For the graph representation,
Graph Neural Network (GNN) classifiers were developed using StellarGraph7.
The GNN uses a well-established Deep Graph Convolutional Neural Network
taken from [27], we modify their parameters only in the dense layer, which is re-
duced to 64 units from 128 in order to reduce the memory footprint. All neural
networks are trained for 100 epochs. Finally, to conduct baseline experiments
using extracted features for comparison with the domain-agnostic representa-
tions, we use a Random Forest (RF) classifier, implemented using scikit-learn
with default settings which creates an ensemble of 100 estimators. Throughout,
classifiers were trained using cross-validation with 10 folds. Results are reported
using the average accuracy and F1-scores8 of the 10-folds.

6 Results

Experiments were conducted to: (1) compare the classification accuracy/F1-score
values obtained by training a classifier per representation to output the domain
associated with an instance (i.e. task-recognition); (2) compare the classification
accuracy/F1-score obtained by training one classifier per domain (each with the
same representation) to select the best solver for the instance (Single task clas-
sification); (3) determine whether a single classifier trained once with instances

7 https://github.com/stellargraph/stellargraph
8 combines the precision and recall of a classifier into a single metric by taking their
harmonic mean



Fig. 4. Data pipelines: for single-task experiments, only one domain and its two cor-
responding solvers are wired at a time.

Table 1. Domain recognition results averaged over 10 folds. Standard deviation in
parenthesis.

Representation Accuracy F1-score

Text 92.8(0.9)% 0.93 (0.01)
Images 100.0(0.00)% 1.00 (0.00)
Graph 100.0(0.00)% 1.00 (0.00)

from all three domains with a specific representation can select the best solver for
a given instance (multi-task classifier). Experiments (2) and (3) were repeated
for each of the three chosen representations.

6.1 Task Recognition

To determine whether a classifier with a domain-agnostic input representation
can identify the domain associated with an instance (task recognition), AutoK-
eras was used to train one classifier for each representation using 15K instances
collated from the three domains (5K from each domain). A single integer rep-
resenting the domain is used as output. The results (Table 1) show that the
classifier identifies the correct domain with very high accuracy for all three rep-
resentations. The graph and image representations result in 100% averaged ac-
curacy over the 10 folds. There are obvious differences in structure/patterns
between the three domains when represented as graphs (Fig. 2) which poses
a trivial challenge for the classifier regarding domain prediction, in fact for all
training rounds the accuracy reaches 100% by the 5th epoch. This is less obvious
for image representations (Fig.1) where differences are more subtle and creating
instances from two different domains that are indistinguishable after transfor-
mation is technically possible. These results provide confidence that given an
instance from an unknown domain defined by a domain-agnostic representation,
this step could be followed by single-task algorithm-selection to identify an ap-
propriate solver. This is explored in the next section.

6.2 Single-Task Algorithm Selection

These experiments compare the performance of each representation when used
as input to a domain-specific classifier to select the most appropriate solver for
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Fig. 5. Confusion Matrices in Multi-task settings. Rows represent the winning solver,
columns represent the solver that was selected on average over 10 folds.

the instance. We measure the accuracy and the F1 score of each classifier. Results
are reported in Table 2, which shows the average accuracy and F1-scores of the
10 folds for the single-task classifier per representation per domain. Ranking
each representation based on F1-scoring, we observe that:

– TSP: Image > Graph > Text

– Knapsack: Text > Image > Graph

– Graph Colouring: Graph > Image > Text

– Average Across Domains: Image > Graph > Text

The relative strengths and weaknesses of each representation appear strongly
domain-related, with the image-based representation doing best on average. We
highlight that the largest difference in performance across representations is
recorded in the TSP domain with values going from 0.60(0.02) for Text to
0.72(0.02) for images. While in the KP domain the difference is smallest, go-
ing from 0.89(0.01) for Graphs to 0.93(0.01) for Text. Table 2 also shows the
results of learning a feature-based classifier in each domain for the single-task
problem. Recall that useful features are defined using considerable domain-
knowledge/expertise and have been the subject of much academic literature
in the past. However, all four classifiers perform comparably on the Knapsack
problem. This is particularly surprising for the textual representation, consider-
ing that no pre-processing or domain knowledge is provided. This demonstrates
that for some domains and specific instance sets features can be learned directly
by the classifier with good performance regardless of the representation used.
In the case of the graph colouring domain both graphs and images perform on
a par with the feature-based method, providing further evidence of the viabil-
ity of using a domain-agnostic representation. The feature-representation clearly
surpasses all three domain-agnostic representations for TSP: this is perhaps the
domain where there has been most effort in collating useful features (64 features
are used from the R tsplib package) and therefore the result is not surprising.



Table 2. Mean accuracy and macro F1-score over 10 folds. Performance that are above
or on par to features are highlighted in bold.

Representation Domain Accuracy % St.d. F1-Score St.d

Text TSP 60.38 2.47 0.60 0.02
Text KP 92.66 1.04 0.93 0.01
Text GC 64.08 2.56 0.64 0.03
Text Avg-Single 72.3 2.11 0.72 0.02
Text Multi-Task 67.49 1.10 0.67 0.01

Images TSP 71.80 1.75 0.72 0.02
Images KP 92.18 0.93 0.92 0.01
Images GC 69.96 2.21 0.70 0.02
Images Avg-Single 77.98 1.63 0.78 0.02
Images Multi-Task 77.40 1.15 0.77 0.01

Graphs TSP 65.92 2.72 0.66 0.03
Graphs KP 89.04 1.34 0.89 0.01
Graphs GC 71.22 3.66 0.71 0.04
Graphs Avg-Single 75.39 2.57 0.75 0.02
Graphs Multi-Task 72.81 1.22 0.72 0.01

Features TSP 99.38 0.36 0.99 0.03
Features KP 93.46 0.89 0.91 0.01
Features GC 69.90 2.16 0.70 0.02
Features Avg-Single 87.58 1.14 0.87 0.02

6.3 Multi-Task Algorithm Selection

Finally, we investigate multi-task algorithm selection, i.e. training a single clas-
sifier simultaneously on all instances from multiple domains (where all instances
are defined using the same representation), with the goal of selecting the best
solver for each instance. 15k instances (5k from each domain) labelled with a
single integer output representing the solver were used as training data.

Average accuracy/F1 calculated over the 10 test-fold is also shown in Table
2. Comparing the three representations directly, we observe the relative ranking
remains unvaried with respect to the single task performance where on aver-
age Images > Graph > Text. It should be noted that all three representations
produce an accuracy which is lower than the corresponding average over three
domains for each representation obtained in the single-task experiments. How-
ever, we highlight that in the case of the image-based learner the drop in perfor-
mance, measured by the F1-score, only goes from 0.78(0.02) to 0.77(0.01) due to
a decrease in accuracy in the CHR class alone as shown in Table 3. The largest
decrease in performance is observed in the text-based representation which goes
from 0.72(0.01) to 0.67(0.01), while graphs sit in the middle going from 0.75(0.02)
to 0.72(0.01). It can be observed from the same table how TSP is the domain
that causes the most decrease in performance across all representations when
going from single-task to multi-task setting.

Figure 5 shows confusion matrices for each representation in the multi-task
setting, indicating how instances were misclassified. Rows represent the expected



Table 3. Solver wise F1-scores for single task and multi task models, averaged over 10
folds. T: Text, I:Images, G:Graphs. S:Single-Task, M:Multi-task.

Dom. Solver Features T-S T-M I-S I-M G-S G-M

TSP CHR 0.99(0.01) 0.59(0.04) 0.41(0.04) 0.72(0.03) 0.69(0.03) 0.65(0.03) 0.65(0.05)
TSP GRD 0.99(0.01) 0.62(0.02) 0.62(0.02) 0.72(0.02) 0.72(0.03) 0.67(0.04) 0.62(0.04)

KP CMB 0.93(0.01) 0.92(0.01) 0.9(0.01) 0.92(0.01) 0.92(0.01) 0.9(0.01) 0.87(0.01)
KP EXP 0.89(0.01) 0.93(0.01) 0.83(0.02) 0.92(0.01) 0.92(0.01) 0.88(0.02) 0.85(0.02)

GC DST 0.70(0.01) 0.63(0.03) 0.63(0.03) 0.71(0.03) 0.71(0.02) 0.73(0.04) 0.73(0.02)
GC LF 0.69(0.01) 0.65(0.03) 0.62(0.03) 0.68(0.02) 0.68(0.01) 0.69(0.05) 0.62(0.04)

classification and columns the average predicted classification over 10 folds. Re-
markably both image and graph-based representations never select a solver from
the wrong domain when misclassifying an instance. Differently from the task-
recognition experiments, here no information was provided to the network re-
garding the specific domains, hence the grouping emerges spontaneously.

7 Conclusion

The goal of this paper was to investigate the strengths and weaknesses of three
domain-agnostic representations (text, images, and graphs) for describing in-
stances from multiple domains. As set out in the introductory section, a common
representation is necessary to facilitate the introduction of new tasks to a multi-
task selector in a manner that does not require significant engineering effort to
develop a new classifier architecture specific to a domain, or the domain exper-
tise necessary to extract features. A common representation can also facilitate
cross-domain learning and makes steps towards a future vision of developing a
general solver that can solve instances from a range of domains.

Results are presented in tables 2 and 3. While there is no overall ‘winner’, the
text-based representation performs surprisingly well in the single-task KP do-
main and the image-based representation is on par with the feature-based meth-
ods in two out of three domains (KP, GC) in both single and multi-task settings.
Although the multi-task classification task tends to provide lower accuracy/F1
than the related single-task experiments, in the image-based representation the
drop in performance is almost negligible with the variance of the two results
overlapping. Investigating how many instances were misclassified revealed that
both image-based and graph-based representations made no mistakes in any of
the test sets.

These findings highlight that there is still considerable research to be done
to build optimisation systems that can effectively handle multiple tasks without
having to significantly re-engineer systems if new tasks arrive — an inevitability
in any real-world setting. This suggests that further work is required to both
find appropriate domain-agnostic representations and also to develop new archi-
tectures specific to the multi-task setting (which may differ substantially from
state-of-the-art approaches in domain-specific single-task setting).



The work presented only begins to scratch the surface with respect to creating
a solver capable of handling multiple tasks, including those unanticipated during
design. Specifically, we intend to conduct additional tests to understand how the
system scales with the number of tasks it has to handle, as well as considering
more complex scenarios where new tasks arrive sequentially, requiring the system
to adapt to the new task. Finally, understanding the limitations of such an
approach is also important — for example, by developing metrics that measure
similarity between domains in order to quantify the amount of task ‘diversity’ a
system might handle.
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1. Akgün, Ö., Dang, N., Miguel, I., Salamon, A.Z., Spracklen, P., Stone, C.: Discrim-
inating instance generation from abstract specifications: A case study with cp and
mip. In: Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research: 17th International Conference, CPAIOR 2020. pp. 41–51 (2020)

2. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without
feature extraction. In: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 198–206 (2019)

3. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from feature-based
to feature-free approaches. Journal of Heuristics pp. 1–38 (2023)

4. Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., Trautmann, H.:
Evolving diverse tsp instances by means of novel and creative mutation operators.
In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms. pp. 58–71 (2019)

5. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22(4), 251–256 (1979)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group (1976)
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Abstract. The design of intermodal hub networks is of paramount im-
portance in logistic operations involving multiple transportation modes
like trains and trucks. In this work, we consider two non-linear optimiza-
tion models for the intermodal p-hub network design problem assuming
that hubs can be located anywhere in a two-dimensional space. The
first formulation focuses on minimizing congestion in transport activi-
ties, while the second formulation aims to maximize hub usage using the
concept of entropy. To solve the problem, we propose two heuristic al-
gorithms which are generalizations of well-known possibilistic clustering
algorithms. These heuristics are relatively easy to implement and provide
a practical way to efficiently solve problems.

Keywords: Possibilistic clustering · Intermodal hub network design ·

Planar hub location · Lagrangian relaxation.

1 Introduction

Intermodal hub network design problems refer to the location of hub facilities
and the allocation of demand or spoke, nodes to hubs to optimize some objective
function that depends on the location of hubs and the routing of flows [4]. Hubs
serve as consolidation centers with an inter-hub transport cost lower than the
hub-and-spoke transport cost due to economies of scale. Hub location problems
are complicated NP-hard optimization problems and there is a high interest in
the research community in finding efficient solution algorithms for solving them.
Surveys in hub location modeling include [2], [1], [3], and [7].
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e Innovación (MINCIENCIAS) of Colombia (project code: BB1.112.957.930-1), and
the Universidad del Valle, Cali, Colombia.
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Compared with the discrete hub location research, the literature on planar
hub location is very scarce. One of the first heuristic algorithms for solving the
planar hub location was proposed by [14], who studied the location of two inter-
acting hubs with single allocations. [13] considered a hard clustering approach
for solving the planar hub location with single allocations. More recently, [9]
proposed a probabilistic clustering approach for solving the planar hub location
with direct transportation and multiple allocations. Previous authors consider an
Euclidean distance metric to obtain the total distance in the objective function.

[6] developed a genetic algorithm for solving the single allocation planar hub
location. [8] proposed an iterative Weszfield-type algorithm along with a particle
swarm optimization algorithm for solving the planar hub-location routing prob-
lem with single allocations. For their part, [5] studied the theoretical properties
and solution algorithms of several hub network structures.

In this work, we propose heuristic algorithms for solving the planar multiple
allocation p-hub location problem with direct transportation decisions. We fol-
low a possibilistic clustering approach. To the best of our knowledge, there are
no studies considering possibilistic clustering approaches for hub location. We
also consider two variants of the problem including congestion and entropy as-
pects. The proposed algorithms can be understood as generalizations of existing
possibilistic clustering algorithms.

Section 2 proposes a heuristic algorithm for solving the hub location prob-
lem under congestion. Section 3 develops a heuristic algorithm considering an
entropy-maximizing approach. Section 4 provides numerical experiments for
evaluating the effectiveness and efficiency of the heuristics. Finally, Section 5
concludes the paper.

2 A congestion approach

We consider the planar p-hub location problem in which we have n nodes or
points in a plane and we want to determine the coordinates for the optimal loca-
tion of p hubs. The coordinates of the hubs do not need to coincide with a given
subset of nodes and might be located anywhere in the plane. Each pair of nodes
has an origin-destination (OD) demand Wij ≥ 0 associated with it. The demand
between nodes i and j might be satisfied using truck-only transport or using
the intermodal transportation option by performing transshipment operations
at hubs. The advantage of using the intermodal transport option is the reduced
transportation costs in the inter-hub transportation part, which is achieved due
to the consolidation at hubs and the effect of the economies of scale at transport
activities.

The planar hub location problem consists of locating p hubs in a continu-
ous space, and determining direct and intermodal transport flows to minimize
transportation costs, which are proportional to the transport distance and the
amount of flow. In this paper, we consider the squared Euclidean distance as
distance metric. Then, the distance between nodes i and j is:

d2ij = ∥si − sj∥22, (1)



434 M.J. Basallo et al.

where si is the vector containing the coordinates of node i. We also refer to
this quantity as the direct or truck-only transport distance, which can be used
to satisfy the transport demand between nodes i and j. Alternatively, the de-
mand between nodes i and j can be satisfied using the intermodal (train-truck)
transport option through hubs l and m, which are located at points vl and vm,
respectively, the total squared Euclidean transport distance D2

ijlm in this case
is:

D2
ijlm(vl,vm) =∥si − vl∥22 + α∥vl − vm∥22 + ∥sj − vm∥22, (2)

where the first term denotes the collection distance from node i to hub l, which is
referred to as collection distance and it is performed by trucks. The second term
is the inter-hub distance between hubs l and m, which is affected by a discount
factor α to account for the economies of scale in inter-hub train transportation.
The last term is the final stage of the transport activities from hub m to desti-
nation node j, which is also referred to as distribution distance, which is again
performed by trucks.

One aspect of interest in hub location theory is the mitigation of the impact
of congestion, which increases transportation costs. There are many alternatives
in the literature for the modeling of congestion (see [2]). In this work, we consider
an alternative approach, which is based on the power law congestion function
[10].

In our formulation, congestion is accounted for in each source of flow in the
network, and then individual contributions of congestion are aggregated. In this
sense, congestion costs are measured as a power function of the individual flows,
with exponent q > 1. This differs from the traditional power law congestion
function, which quantifies congestion costs according to the total flow instead
(see [10]).

Let xijlm ∈ [0, 1] and yij ∈ [0, 1] be decision variables that represent the frac-
tion of flow transported between nodes i and j using the intermodal (train-truck)
and truck only transport option, respectively. For their part, vl, l = 1, . . . , p, are
2 by 1 decision vectors used for selecting the coordinates (location) of hubs.
The congestion minimizing hub location problem (CHL) is defined as follows as
follows:

(CHL) :

min
x,y,v

n∑
i=1

n∑
j=1

p∑
l=1

p∑
m=1

(Wijxijlm)qD2
ijlm(vl,vm)

n∑
i=1

n∑
j=1

(Wijyij)
qd2ij , (3)

s.t. yij +

p∑
l=1

p∑
m=1

xijlm = 1, ∀i, j = 1, . . . , n, (4)

xijlm, yij ≥ 0, ∀i, j = 1, . . . n; l,m = 1 . . . p. (5)

Objective Function (3) measures the total cost for the direct and intermodal
transport alternatives measuring the impact of congestion using a power law
congestion function for each transport path. Constraints (4) guarantee that the
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demand is satisfied exactly by the intermodal, direct transport, or by a combi-
nation of these alternatives. Constraints (5) establish the domain of the decision
variables. It is not necessary to explicitly state that xijlm ≤ 1 and yij ≤ 1
given that those variables are non-negative implying that previous constraints
are implicitly imposed by Constraints (4).

We consider a Lagrangian relaxation approach considering Constraints (4) as
complicating constraints. The Lagrangian function of the Optimization Problem
(3)–(5) is:

L =
n∑

i=1

n∑
j=1

p∑
l=1

p∑
m=1

(Wijxijlm)qD2
ijlm(vl,vm)

n∑
i=1

n∑
j=1

(Wijyij)
qd2ij−

n∑
i=1

n∑
j=1

λij

(
yij +

p∑
l=1

p∑
m=1

xijlm − 1

)
. (6)

Necessary conditions for xijlm and yij to be a minimum of the Problem (3)–(5)
are:

∂L

∂xijlm
= qW q

ijD
2
ijlmxq−1

ijlm − λij = 0, (7)

∂L

∂yij
= qW q

ijd
2
ijy

q−1
ij − λij = 0. (8)

Solving for xijlm and yij in Equations (7) and (8), we obtain:

xijlm =

(
λij

qW q
ijD

2
ijlm

) 1
q−1

, (9)

yij =

(
λij

qW q
ijd

2
ij

) 1
q−1

. (10)

The substitution of the expressions for xijlm and yij from Equations (9) and
(10) into Constraint (4) produces:(

λij

qW q
ijd

2
ij

) 1
q−1

+

p∑
r=1

p∑
s=1

(
λij

qW q
ijD

2
ijrs

) 1
q−1

= 1 (11)

Solving for λij in Equation (11), we obtain:

λij =

((
qW q

ijd
2
ij

) 1
1−q +

p∑
r=1

p∑
s=1

(
qW q

ijD
2
ijrs

) 1
1−q

)1−q

. (12)

Note that we can substitute the value of λij from Equation (12) into Equations
(9) and (10) to compute xijlm and yij . Clearly, the lagrange multiplier λij is
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non-negaitive, and given that λij satisfy (12), this guarantee that xijlm ∈ [0, 1]
and yij ∈ [0, 1].

On the other hand, a necessary condition of vl to be a minimum is:

∂L

∂vl
=

n∑
i=1

n∑
j=1

p∑
m=1

W q
ijx

q
ijlm ((1 + α)vl − (si + αvm)) = 0. (13)

Solving for vl in the above equation we obtain:

vl =

∑n
i=1

∑n
j=1

∑p
m=1 W

q
ijx

q
ijlm(si + αvm)

(1 + α)
∑n

i=1

∑n
j=1

∑p
m=1 W

q
ijx

q
ijlm

. (14)

Equations (9), (10) and (14) are coupled and it is difficult to obtain a solution
for the resulting system. Alternatively, it is possible to obtain an approximate
solution of the system by an iterative procedure for computing xijlm, yij and vl,
as it is described as follows:

Heuristic algorithm for solving CHL

1. Set t = 0 and choose the initial estimates of the location of hubs vl(t), l =
1, . . . , p.

2. Compute the transportation fractions xijlm as follows (Equation (9)):

xijlm(t) =

(
λij

qW q
ijD

2
ijlm(t)

) 1
q−1

,

where,

λij(t) =

((
qW q

ijd
2
ij

) 1
1−q +

p∑
r=1

p∑
s=1

(
qW q

ijD
2
ijrs(t)

) 1
1−q

)1−q

.

3. Update the location of hubs (Equation (14)):

vl(t+ 1) =

∑n
i=1

∑n
j=1

∑p
m=1 W

q
ijx

q
ijlm(t)(si + αvm(t))

(1 + α)
∑n

i=1

∑n
j=1

∑p
m=1 W

q
ijx

q
ijlm(t)

.

4. set t = t + 1 and repeat Steps 2 and 3 until the termination criteria is
satisfied.

This iterative algorithm is a generalization of the well-known possibilistic clus-
tering algorithm [11]. Although the algorithm does not consider directly the
computation of yij , this value can be easily obtained from Constraint (4).
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3 An entropy maximizing approach

[15] suggested the use of the entropy maximizing principle for selecting the lo-
cation of hubs in discrete models. The idea is to use the available information
regarding transport flows to describe the probability distribution of hub usage
and then select the p hub locations with the smallest bias. This is done by max-
imizing a so-called entropy function. According to [15], the natural logarithm of
the entropy E is defined as follows:

lnE =

n∑
i=1

n∑
j=1

p∑
l=1

p∑
m=1

xijlm(1− lnxijlm) +

n∑
i=1

n∑
j=1

yij(1− ln yij). (15)

It is noted that maximizing the natural logarithm of the entropy is equivalent
to maximizing the entropy.

Given that the location of hubs should be affected by the transportation cost,
in this paper we also account for the impact of transport cost in the objective
function. Hence, we aim to provide hub network designs with as low a trans-
portation cost as possible and as high entropy as possible. For this formulation,
we change the definition of flow variables. In this case, xijlm and yij should be
understood as the total flow transported between nodes i and j using the inter-
modal and truck-only transport options, respectively. The entropy maximizing
hub location problem (EHL) is defined as follows as follows:

(EHL) :

min
n∑

i=1

n∑
j=1

p∑
l=1

p∑
m=1

xijlmD2
ijlm(vl,vm) +

n∑
i=1

n∑
j=1

yijd
2
ij+

η

 n∑
i=1

n∑
j=1

p∑
l=1

p∑
m=1

xijlm(lnxijlm − 1) +
n∑

i=1

n∑
j=1

yij(ln yij − 1)

 ,

(16)

s.t. (5),

yij +

p∑
l=1

p∑
m=1

xijlm = Wij , ∀i, j = 1, . . . , n. (17)

The first term in Objective Function (16) refers to the total transportation cost.
The second term is the negative of the natural logarithm of the entropy where the
negative value is taken given that the objective function is of minimization and
we intend to maximize entropy. Minimizing the negative entropy is equivalent to
maximizing the entropy. The entropy term is affected by a factor η outside the
parenthesis as a weighting factor for the transport and entropy terms. For their
part, Constraints (17) guarantee that the total transport flow between nodes i
and j satisfies the corresponding demand.

To solve the problem (16)–(17), we follow a similar procedure to Section 2
and propose the following iterative algorithmic scheme:
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Heuristic solution for EHL

1. Set t = 0 and choose the initial estimates of the location of hubs vl(t), l =
1, . . . , p.

2. Compute the transportation flows xijlm as follows:

xijlm(t) = e
λij−D2

ijlm
η ,

where,

λij(t) = ln

(
Wij

e−d2
ij/η +

∑p
r=1

∑p
s=1 e

−D2
ijrs/η

)
.

3. Update the location of hubs:

vl(t+ 1) =

∑n
i=1

∑n
j=1

∑p
m=1 xijlm(t)(si + αvm(t))

(1 + α)
∑n

i=1

∑n
j=1

∑p
m=1 xijlm(t)

.

4. set t = t+1 and repeat Steps 2 and 3 until termination criteria are satisfied.

This iterative algorithm, is a generalization of the possibilistic clustering algo-
rithm suggested by [12].

The termination criterion of the algorithms was considered according to the
value of flow variables xijlm at each iteration. The algorithm terminates when
∥X(t)−X(t−1)∥22 < ϵ, where X(t) represents the multidimensional array for the
flow decision variables xijlm at iteration t, and ϵ is some threshold; we consider
ϵ = 10−2. The algorithms terminate whenever the ϵ threshold or the maximum
number of iterations criteria is reached.

4 Numerical experiments

We generate instances by randomly generating a set of demand nodes in the
plane. The coordinates of demand nodes are generated to follow p spherical-like
clusters, where p is the number of required hubs to open. To this end, we generate
random data following bivariate normal distributions with mean µl and covari-
ance matrix Σl = σ2I, for l = 1, . . . p. The cluster centroids µl were uniformly
generated in the box [0, 100]× [0, 100]. The size of the clusters was adjusted by
varying the dispersion parameter σ2. Each cluster contains an evenly distributed
number of demand nodes. For their part, the transport demand between each
node was generated randomly with the uniform distribution U ∼ [0, 1 000].

An implementation of the algorithms was conducted using MATLAB R2020b.
We used a computer with CPU AMD Ryzen 5 at 2.10 GHz, 8.00 GB RAM,
Windows 10 Pro, and 64 bits.

To analyze the efficiency of the proposed algorithms, the number of demand
nodes n was evaluated at 11 different values ranging from 10 to 1 000. The num-
ber of hubs to locate is evaluated from 3 to 6. Additionally, 30 repetitions were
conducted. Each repetition is a completely new randomly generated problem. In
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this sense, a total of 1 320 problem instances were evaluated for each algorithm.
We use σ2 = 500, generating high overlap between clusters. For the congestion-
minimizing model (CHL), we consider an exponent q = 1.1. For their part, for
the entropy maximizing model (EHL), we consider η = 200. In both cases, the
discount factor was set to α = 0.75.

Our experience by testing the algorithms indicates that the congestion min-
imizing hub location (CHL) algorithm takes on average more iterations than
the entropy maximizing hub location (EHL) algorithm. For this reason, we set
the maximum number of iterations for the CHL algorithm to 200, while for the
EHL the maximum number of iterations is set to 400. Table 1 shows the results
for the average number of iterations and the average processing time for CHL
and EHL. Increasing the number of hubs to locate notoriously increases the pro-
cessing time of the algorithms, and the iteration count (see [8]). On average,
the EHL algorithm takes 2.75 times more iterations than the CHL algorithm.
Despite this, the average processing time of the EHL algorithm is 1.93 times
faster. One aspect that diminishes the efficiency of the CHL algorithm is the
computation of the power function for the demand matrix W and the matrix of
decision variables X in steps 2 and 3 of the algorithm.

Table 1: Computational results.

CHL† EHL‡

n p Iterations∗ Time (s) Iterations∗ Time (s)

100

3 39.7 1.82 86.1 0.71
4 49.7 4.44 106.0 2.78
5 60.9(1) 7.88 143.1 5.85
6 75.6 15.29 166.8(1) 9.76

200

3 45.6 9.96 86.8 5.30
4 63.9(2) 24.74 147.9(1) 15.58
5 71.8 42.05 207.5(2) 33.73
6 80.4(1) 67.27 204.4(1) 47.51

300

3 41.6 20.79 130.5(2) 17.64
4 70.2(1) 63.60 148.8(2) 34.82
5 78.7 103.92 197.5(1) 71.50
6 99.1(2) 182.76 215.6(3) 111.14

400

3 56.1(1) 47.83 108.2 25.85
4 79.3(1) 117.58 149.1 61.78
5 86.3(1) 197.88 183.8(1) 117.61
6 110.9(6) 357.34 218.4(5) 200.42

500

3 51.6 68.58 117.6(1) 43.74
4 107.9(4) 245.25 181.8(2) 117.70
5 111.7 419.89 214.8(3) 215.72
6 123.1(5) 623.79 232.0(5) 334.20

600

3 56.8(1) 108.26 107.1 57.74
4 95.5(4) 321.41 180.0(2) 168.5
5 98.4(3) 516.17 196.8(1) 285.37
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Table 1 continued from previous page
CHL† EHL‡

n p Iterations∗ Time (s) Iterations∗ Time (s)
6 110.9(6) 357.34 252.5(6) 518.71

700

3 59.7(1) 152.50 127.8(1) 93.03
4 95.3 422.50 190.7(1) 245.08
5 119.0(5) 798.98 245.0(4) 483.80
6 129.1(5) 1,215.65 244.8(1) 684.75

800

3 69.4(1) 229.94 114.0(1) 108.33
4 109.9(4) 630.08 184.7(1) 303.35
5 111.7(2) 995.96 219.3(2) 558.5
6 127.8(6) 1,589.18 263.2(6) 940.47

900

3 64.2 306.38 144.6 172.40
4 84.6(2) 638.65 211.0(4) 436.17
5 117.4(6) 1,294.75 217.5(1) 690.34
6 130.6(7) 2,134.40 250.0(4) 1,132.48

1,000

3 63.8(1) 327.74 145.0(1) 220.02
4 100.7(1) 886.56 211.9(3) 552.51
5 115.2(5) 1,540.10 225.2(2) 876.52
6 137.7(5) 2,603.52 288.2(10) 1,598.10

* Number in parentheses indicate the number of times

the algorithm reaches the maximum number of iterations.

Because of the heuristic nature of the algorithms, there is some variation in
the results when the algorithm initializes at random, as was the case for the
results in Table 1. In this sense, the solution of the algorithm corresponds to a
local optima.

According to Figure 1, the magnitude of the discount factor has a clear
impact on the network structure. When the discount factor is small, the hubs
tend to be located far from each other and in the center of dense regions in terms
of the proximity and number of demand nodes. In this case, the inter-hub traffic
is high. On the other hand, when the discount factor is high, hubs tend to be
closer to each other and the inter-hub traffic is considerably reduced. However,
contrary to [9], when α approaches 1, hub locations do not necessarily collapse
in a single point (see also [8]). This might be due to the different nature of the
objective functions between this paper and the one of [9].

5 Conclusion

We studied the intermodal p-hub network design problem considering congestion-
minimizing and entropy-maximizing approaches. The purpose of the first ap-
proach is to avoid the negative impact of congestion on transport activities. The
latter approach seeks to maximize the hub usage in the network. We propose
two non-linear formulations considering that hubs can be located anywhere in a
two-dimensional space. We proposed heuristic algorithms based on Lagrangian
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Fig. 1. Solutions for different values of the discount factor α. We show only the allo-
cation (blue link) of a non-hub node to its most representative hub. The brightness of
the links in blue is proportional to the total flow in the link. The thickness of inter-
hub links in red is proportional to the total flow passing through the arc. Parameters:
n = 200, p = 4, q = 1.1, η = 200.

relaxation to solve each problem. The heuristics are generalizations of the well-
known possibilistic and possibilistic c-means clustering algorithms widely used
in the literature in the pattern recognition field. The algorithms provide local
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optimal solutions to hub network design problems of up to 1 000 nodes and 6
hubs in a few minutes of computational time.
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Abstract. Piecewise Polynomials (PPs) are utilized in several engineer-
ing disciplines, like trajectory planning, to approximate position profiles
given in the form of a set of points. While the approximation target
along with domain-specific requirements, like Ck-continuity, can be for-
mulated as a system of equations and a result can be computed directly,
such closed-form solutions posses limited flexibility with respect to poly-
nomial degrees, polynomial bases or adding further domain-specific re-
quirements. Sufficiently complex optimization goals soon call for the use
of numerical methods, like gradient descent. Since gradient descent lies
at the heart of training Artificial Neural Networks (ANNs), modern Ma-
chine Learning (ML) frameworks like TensorFlow come with a set of
gradient-based optimizers potentially suitable for a wide range of opti-
mization problems beyond the training task for ANNs. Our approach is
to utilize the versatility of PP models and combine it with the potential
of modern ML optimizers for the use in function approximation in 1D
trajectory planning in the context of electronic cam design. We utilize
available optimizers of the ML framework TensorFlow directly, outside
of the scope of ANNs, to optimize model parameters of our PP model.
In this paper, we show how an orthogonal polynomial basis contributes
to improving approximation and continuity optimization performance.
Utilizing Chebyshev polynomials of the first kind, we develop a novel
regularization approach enabling clearly improved convergence behavior.
We show that, using this regularization approach, Chebyshev basis per-
forms better than power basis for all relevant optimizers in the combined
approximation and continuity optimization setting and demonstrate us-
ability of the presented approach within the electronic cam domain.

Keywords: Piecewise Polynomials · Gradient Descent · Chebyshev Poly-
nomials · Approximation · TensorFlow · Electronic Cams

1 Introduction

1.1 Motivation

PPs are of special interest in several science and engineering disciplines, where
the latter are particularly interesting, as they come with additional physical con-
straints. Path and trajectory planning for machines in the field of mechatronics
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are just two examples. Path planning is the task of finding possible waypoints of a
robot or automated machine to move through its environment without collision.
Trajectory planning computes time-dependent positional, velocity or accelera-
tion profiles that hold setpoints for controllers of robots or automated machines
to move joints from one waypoint to the other. Electronic cams are a subfield of
the latter, describing repetitive motion executed by servo drives within industrial
machines. In this context, positional, velocity or acceleration profiles are defined
as input point clouds and approximated by PPs, which are then processed by
industrial servo drives, like B&R Industrial Automation’s ACOPOS series. Con-
ventionally, the approximation target along with domain-specific requirements
such as continuity, cyclicity or periodicity are formulated as a system of equa-
tions and a closed-form solution is computed. While computational effort may
be low for computing such closed-form solutions, they posses limited flexibility
with respect to polynomial degrees, polynomial bases or adding further domain-
specific requirements. Sufficiently complex optimization goals soon call for the
use of numerical methods, like gradient descent.

Training an ANN is the iterative process of adapting weights of node con-
nections in order to fit given training data. With the advent of ML frameworks,
this iterative training task is commonly carried out by calculating gradients us-
ing automatic differentiation and updating weights according to the gradient
descent algorithm. Since gradient descent lies at the heart of this process, mod-
ern ML frameworks like TensorFlow or PyTorch therefore come with a set of
gradient-based optimizers potentially suitable for a wide range of optimization
problems beyond the training task for ANNs. Since advances in deep learning
rely on these optimizers, state-of-the art insights within the field are continu-
ously implemented, holding the potential of better performance than classical
gradient descent optimizers.

Our approach therefore is to utilize the versatility of PP models and combine
it with the potential of modern ML optimizers for the use in function approx-
imation in 1D trajectory planning in the context of electronic cam design. We
utilize available optimizers of the ML framework TensorFlow directly, outside
of the scope of ANNs, to optimize model parameters of our PP model. This
allows for an optimization of trajectories with respect to dynamic criteria using
state of the art methods, while at the same time working with an explainable
model, allowing to directly derive physical properties like velocity, acceleration
or jerk. Although our work documented in [6] shows that our approach is ba-
sically feasible, experiments show that clean convergence especially regarding
continuity optimization requires further practical considerations and regulariza-
tion techniques. In an attempt to overcome these shortcomings, in this paper, we
show how an orthogonal polynomial basis contributes to significantly improving
approximation and continuity optimization performance.

1.2 An Orthogonal Basis

Orthogonal polynomial sets are beneficial for determining the best polynomial
approximation to an arbitrary function f in the least squares sense, resulting



ML Optimized Orthogonal Basis PP Approximation 445

from the fact that every polynomial in such an orthogonal system possesses a
minimal L2 property with respect to the system’s weight function, see [8] for
details. Among different sets of orthogonal polynomials, Chebyshev polynomials
of the first kind are of special interest. Besides favorable numerical properties,
like the absolute values such polynomials evaluate to staying within the unit
interval, their roots are well known as nodes (Chebyshev nodes) in polynomial
interpolation to minimize the problem of Runge’s phenomenon. This effect is in-
teresting for us, as we are anticipating reduced oscillating behavior beneficial for
our electronic cam approximation setting. Additionally and contrary to Cheby-
shev polynomials of the second kind, numerous efficient algorithms exist for the
conversion between orthogonal basis and power basis representations [2]. (We
need this in the end, since our solution targets servo drives like B&R Indus-
trial Automation’s ACOPOS series processing cam profiles as a power basis PP
function.) With respect to potential future work, the relationship of Chebyshev
series to Fourier cosine series has the potential of allowing a more straightforward
formal approach to spectral analysis and optimization of generated cam profiles
(e.g. to reduce resonance vibrations), since it inherits theorems and properties of
Fourier series, allowing for a Chebyshev transform analogue to Fourier transform
[4]. These arguments make Chebyshev polynomials of the first kind an attractive
subject of investigation for this paper.

1.3 Related work

There is a lot of published work on approximation using PP in the cam approx-
imation domain that rely on a closed-form expression in order to non-iteratively
calculate a solution, like [9]. Although computational effort is reduced using such
approaches, as mentioned earlier, they posses limited flexibility with respect to
polynomial degrees, bases and complexity of loss functions. There also is work on
PP approximation using “classical” gradient based approaches. In [3], Voronoi
tessellation is used for partitioning the input space before approximating given
2D surfaces using a gradient-based approach with multivariate PPs. The authors
state that an orthogonal basis is beneficial for this task, however, develop their
approach using power basis. Contrary to our work, the loss function only com-
prises the approximation error, which implies that continuity is not achieved by
their approach. Furthermore, the authors state that magnitudes of derivatives
of the error function may vary greatly, thus making classical gradient descent
approaches unusable. We show in this paper, that regularization may mitigate
this effect, at least for continuity optimization in the 1D setting.

Other work utilizes parametric functions for approximation of given input
data, like B-Spline or NURBS curves, as in [10]. This has some benefits over
non-parametric PPs: For one, Ck-continuity is given simply by the choice of order
of the curve. For another, fewer parameters (usually control points) need to be
optimized. However, PP models are utilized in several engineering disciplines and
conversion from parametric curves is not generally possible. As an example, servo
drives, like B&R Industrial Automation’s ACOPOS series, process electronic
cams in a PP format.
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ANNs are investigated for the use in function approximation. In [1], the au-
thors provide an overview of the state-of-the art with respect to aspects like
numerical stability or accuracy and develop a computational framework for ex-
amining the performance of ANNs in this respect. Although results look promis-
ing and other recent works, like [11], already provide algorithmic bounds for the
ANN approximation setting, one of the main drivers for the use of a PP model
outside of the context of neural networks for our work is explainability. When uti-
lizing Artificial Intelligence (AI) methods in the domain of electronic cams, there
is a strong necessity for explainability, mainly rooted in the fact that movement
of motors and connected kinematic chains like robotic arms affects its physical
environment with the potential of causing harm, therefore calling for predictable
movement. This, in turn, calls for a “predictable model”, that allows to reliably
derive physical properties and generate statements about expected behavior. An-
other recent development tackling these challenges are Physics-informed Neural
Networks (PINNs), where resulting ANNs can be described using partial differ-
ential equations. For the domain of 1D electronic cam approximation covered in
this work, however, using PP models is simpler and more intuitive considering
that servo drives directly utilize PPs.

There are some preliminary non-scientific texts (e.g. personal blog articles)
on gradient descent optimization for polynomial regression utilizing ML opti-
mizers for a single polynomial segment. However, to the best of our knowledge,
there is no published work on utilizing gradient descent optimizers of modern
ML frameworks for Ck-continuous PP approximation other than our previous
research published in [6].

1.4 Contributions

Although Chebyshev basis holds the potential of improved approximation opti-
mization performance, our experiments show that clean convergence, especially
regarding continuity optimization, requires further practical considerations and
regularization techniques. In this work, we therefore

1. adapt our base approach introduced in [6] to utilize an orthogonal basis using
Chebyshev polynomials of the first kind,

2. develop a novel regularization approach enabling clearly improved conver-
gence behavior,

3. show that, using this regularization approach, Chebyshev basis performs
better than power basis for all relevant optimizers in the combined approxi-
mation and continuity optimization setting and

4. demonstrate usability of the presented approach within the electronic cam
domain by comparing remaining approximation and continuity losses to least
squares optima and strictly establishing continuity via an algorithm with
impact only on local polynomial segments.

We do so by studying convergence behavior and properties of generated
curves in the context of controlled experiments utilizing the popular ML frame-
work TensorFlow. All experimental results discussed in this work are available
at [12].
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2 Piecewise Polynomial Model

Let d ∈ N0. The Chebyshev polynomials of the first kind are defined via the
recurrence relation 2x Td−1(x)−Td−2(x), with Td(x) = 1 if d = 0 and Td(x) = x
for d = 1. The Chebyshev polynomials form an orthogonal set of functions on
the interval [−1, 1] with respect to the weighting function w(x) = 1√

1−x2
. This

means that two Chebyshev polynomials Tc(x) and Td(x) are orthogonal with

respect to the inner product Td(x)⟩ =
∫ 1

−1
Tc(x)Td(x)

dx√
1−x2

.

Considering n samples at x1 ≤ · · · ≤ xn ∈ R with respective values yi ∈ R,
we ask for a PP f : I → R on the interval I = [x1, xn] approximating the
input samples well and fulfilling additional domain-specific properties, like Ck-
continuity. The polynomial boundaries of f are denoted by ξ0 ≤ · · · ≤ ξm , where
ξ0 = x1 and ξm = xn. With Ii = [ξi−1, ξi], the PP f is modeled bym polynomials
pi : I → R that agree with f on Ii for 1 ≤ i ≤ m. The Chebyshev polynomials
up to d form a basis of the vector space of real-valued polynomials up to degree
d in the interval [−1, 1]. This means that an arbitrary real-valued polynomial
p(x) up to degree d defined on the interval [−1, 1] can be expressed as a linear
combination of Chebyshev polynomials of the first kind. We therefore can adapt
our PP model introduced in [6] and construct each polynomial segment pi via
Chebyshev polynomials of the first kind as

pi =

d∑
j=0

ci,jTj(x− µi). (1)

We rescale input data and shift polynomials to the mean of the respective seg-
ment by µi =

ξi−1+ξi
2 , as outlined in Sect. 3. The ci,j are the to be trained model

parameters of the PP ML model. We investigate the convergence of these model
parameters ci,j with respect to the loss function defined below.

2.1 Loss function

We utilize the loss function

ℓ = αℓCK + (1− α)ℓ2 (2)

with 0 ≤ α ≤ 1 in order to establish Ck-continuity and allow for curve fitting via
least squares approximation, where the approximation error ℓ2 is defined as

ℓ2 =
1

n

∑
i

|f(xi)− yi|2. (3)

Note that, as outlined in Sect. 3.3, optimization results with α = 0 are of less
practical relevance, because remaining approximation errors are significantly
higher after strictly establishing continuity utilizing the algorithm introduced
in Sect. 2.3. Summing up discontinuities at all ξi across relevant derivatives as

ℓCK =
1

m− 1

m−1∑
i=1

k∑
j=0

(
∆i,j

rk

)2

with ∆i,j = p
(j)
i+1(ξi)− p

(j)
i (ξi) (4)
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quantifies the amount of discontinuity throughout the overall PP function. This
loss definition allows for a straightforward extension towards Ck-cyclicity or peri-
odicity commonly required for electronic cam profiles: We can achieve periodicity

in (4) by adapting m − 1 to m and generalizing δi,j = p
(j)
1+(i mod m)(ξi mod m) −

p
(j)
i (ξi). For cyclicity, we ignore the case j = 0 when i = m. (While periodicity

requires matching the values of all derivatives at the endpoints of a motion pro-
file, with cyclicity, we can have a positional offset.) For the sake of generality,
we define ℓCK = 0 for m = 1.

Experiments documented in Sect. 3 show that the derivative-specific regular-
ization factor rk is required in order to reduce oscillating behavior and improve
convergence behavior. In the following, we develop a formula describing this
derivative-specific regularization factor.

2.2 Regularization of Loss

Magnitudes of discontinuities at boundary points may vary significantly between
derivatives, with higher derivatives potentially having higher magnitudes, thus
impairing convergence. With polynomials, the potentially highest contributing
factor is the one of the highest order term. We can express a derivative k of
a polynomial of degree d in power basis form using Horner’s method as pi =∑d

i=k cix
i−k ·Rk, where Rk = (i · (i− 1) · (i− 2) · ... · (i− k− 1)). For the highest

order term, this leaves us with

rk =
d!

(d− k)!
. (5)

Our approach is to regularize each derivative by rk defined in eq. (5) as outlined
in eq. (4). We could apply a similar approach to Chebyshev basis. Since, for
calculating ℓCK , we are only interested in functional values at the boundaries
of individual polynomial segments, due to symmetry properties of Chebyshev
polynomials, we receive the same absolute values at both ends of the interval
[−1, 1]. We therefore don’t need a closed formula also for Chebyshev basis, but
could simply evaluate ∥Td(1)∥ in order to retrieve the regularization factor for
derivative d. However, experiments indicate that rk defined in eq. (5) performs
better also for Chebyshev basis. We therefore utilize this factor for regularization
of continuity loss ℓCK with both polynomial bases.

2.3 Enforcing Continuity

We can eliminate possible remaining discontinuities, i.e., ℓCK > 0 in the sense
of eq. (4), by applying corrective polynomials that strictly enforce ∆(ξi) = 0 at
all ξi. Iterating through polynomial segments from left to right, we construct a
corrective polynomial qi of degree 2k + 1 by formulating a system of equations
taking the values of k + 1 derivatives per endpoint, respectively, as shown in
Algorithm 1 in Appendix A. Note that the corrective polynomials themselves
are of degree at most d.
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A favorable property of Algorithm 1 is that it only has local effects: only
derivatives relevant for Ck-continuity are modified, while other derivatives remain
unchanged. This allows us to apply the corrections at each ξi independently as
they have only local impact. This is a nice property in contrast to interpolation
methods like natural cubic splines or parametric curves lacking the local control
property, like Bézier curves. For an extension towards Ck-cyclicity or periodicity
commonly required for electronic cam profiles, we can naturally modify the first
cases of bL and bR of Algorithm 1 as outlined in Sect. 2.1, respectively.

2.4 Discussion of Continuity Loss Characteristics

Let us denote by θ the list of model parameters c1,0, c1,1, . . . , cm,d and let us
denote by fθ the resulting PP. Using the mean-square-error loss function outlined
in eq. (3), a natural approach would be to solve the optimization problem

θ∗ = argmin
θ

ℓ2, (6)

to obtain the optimal model parameters θ∗. Since this problem is convex, there
is a unique solution. However, fθ∗ is in general not Ck-continuous, or even C0-
continuous, as the individual pi are optimized individually.

We can capture the amount by which Ck-continuity is violated by the ℓCK

loss defined in eq. (4). Note that ∆i,j captures the discontinuity of the j-th
derivative at ξi. Also note that ℓCK = 0 iff Ck-continuity holds.

Then we ask for the ℓ2-minimizing Ck-continuous PP, which is the solution
of the constrained optimization problem

min
θ

ℓ2

s.t. ℓCK = 0.
(7)

We turn this into an unconstrained optimization problem by adding ℓCK to the
loss function in eq. (2) and obtain

θ∗α = argmin
θ

ℓ (8)

with 0 ≤ α ≤ 1. For α = 0, we again have the problem in eq. (6). If α = 1
then any Ck-continuous PP is an optimal solution, such as the zero function, but
also the solution of eq. (7). Any α > 0 leaves us, in general, with a non-convex
optimization problem prone of getting stuck in local optima. Let us denote by
f∗
α a solution of eq. (8) with a fixed α. In this sense, we are interested in a f∗

α

approximating the input point set well after running the algorithm introduced in
Sect. 2.3, since the result is guaranteed to be numerically continuous. In Sect. 3
we therefore perform experiments analyzing suitable initialization methods and
α values for different input point sets and preconditions, with a subsequent strict
establishment of continuity via Algorithm 1.
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3 Experimental Results

The Chebyshev polynomials up to d form a basis of the vector space of real-
valued polynomials up to degree d in the interval [−1, 1]. We therefore rescale
the x-axis of input data so that every segment is of span 2. Considering this, for a
PP consisting of 4 polynomial segments, as an example, we scale the input data
such that I = [0, 8]. Splitting the interval equally into 4 segments we receive a
width of 2 for each individual segment, and, by µi in eq. (1), we shift polynomials
to the mean of the respective segment, leading to Ii = [−1, 1] for each respective
PP segment. We do the same for power basis and skip back-transformation
as we would do in production code. (In our experiments, convergence is not
significantly impaired for interval widths of 2 ± 0.5 for Chebyshev basis with
tested data sets.)

Considering our focus on the electronic cam domain, a position profile with
high acceleration values leads to the kinematic system being exposed to high
forces. A position profile with high jerk values, on the other hand, will make the
system prone to vibration and excessive wear [7]. In order to address the latter,
continuos jerk curves are highly beneficial, if not a prerequisite. We therefore look
closer at C3-continuity in all conducted experiments with α > 0. Looking at Al-
gorithm 1, this implies a PP of degree 7. We utilize the Tensorflow GradientTape
environment for the creation of custom training loops utilizing available optimiz-
ers directly, as outlined in [6]. All experimental results discussed in this section
where created with TensorFlow version 2.13.0, Python 3.10 and are available at
[12].

3.1 Input Data and Optimization Goal

Computing eq. (6) for each polynomial segment, we denote by

ℓ∗2 = min
θ

ℓ2 (9)

the segment-wise approximation loss optimum. The resulting PP is not Ck-
continuous, since each polynomial segment is fitted individually. Utilizing method
CKMIN described in Algorithm 1, we enforce continuity for this result and de-
note by ℓ̃∗2 = ℓ2(ckmin(argminθ ℓ2)) its approximation loss. It is easy to see that

ℓ∗2 ≤ ℓ̃∗2. Considering this, our optimization goal is for results to lie in the margin

between ℓ∗2 and ℓ̃∗2. The closer a result is to ℓ∗2, the better. The value of ℓ∗2 de-
pends on the amount of variance / noise in the input data along with the choice
of number of polynomial segments. In the following, we therefore refer to the
value of ℓ∗2 as variance, i.e., input data with a higher value of ℓ∗2 is referred to as
input data with higher variance. Table 1 gives an overview of input data used
for our experiments along with the respective baseline values of ℓ∗2 and ℓ̃∗2 when
enforcing C3-continuity. In addition to the input data described in Table 1, we
utilize two different noise levels for each dataset, generated by adding random
samples from a normal Gaussian distribution using the package numpy.normal

with scales 0.1 and 0.5, respectively, and a fixed seed of 0 for reproducibility.
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Dataset I n m ℓ∗2 ℓ̃∗2

A: sin(x) [0, π
2
] 50 2 4.110 · 10−21 8.450 · 10−17

B: sin(x) [0, 2π] 100 2 2.240 · 10−11 3.630 · 10−7

C: sin(x24π) [0, 1] 100 3 3.540 · 10−6 4.230 · 10−2

Table 1: Different input data sets used for performing experiments.

3.2 Optimizing ℓ2 only

We first compare performance of Chebyshev basis and power basis in the single
approximation target scenario, i.e., one polynomial segment and α = 0. With
rising polynomial degree, the remaining ℓ2 optimum approximation error gets
lower. This is in accordance with Chebyshev basis performance observed in our
experiments, where results manage to converge to a lower loss with rising de-
gree. This is not the case for power basis. While performance with degree 5
is competitive, higher degrees perform clearly worse than the Chebyshev ba-
sis counterparts. As expected, higher polynomial degrees generally require more
epochs to converge for both bases. For Chebyshev basis, however, results gen-
erally converge to lower remaining losses, and, for all observed degrees ([3, 9]),
within 1000 epochs. Experiments also show that a learning rate of 1.0 is a rea-
sonable choice for all observed degrees and both observed polynomial bases in
the sole approximation optimization target scenario. Raising the number of in-
put points has no effect to the highest learning rate we can achieve. Of course,
the number of input points has to be sufficiently high for a polynomial degree
to enable a well-conditioned fit in the first place. Looking at the impact of the
amount of variance in the input data, generally speaking, it takes longer to con-
verge to the optimal approximation result for both observed polynomial bases
with less noise in the input data. However, while optimization with Chebyshev
basis reaches the least squares optimum for all observed noise levels, power basis
is only competitive with noise added to the input curve. The experimental test
run documenting this behavior for dataset A is depicted in Fig. 1.

Looking at the performance of all optimizers available with TensorFlow ver-
sion 2.13.0 shows that Chebyshev basis clearly outperforms power basis with
all observed datasets and optimizers converging to the optimum within 5000
epochs. While none of the optimizers manage to reach the ℓ2 optimum with
power basis in the given 5000 epochs, there are several optimizers achieving
this with Chebyshev basis. Interestingly, with Chebyshev basis, Vanilla SGD is
outperforming more “elaborate” adaptive optimizers, like AMSGrad and other
Adam-based optimizers. Sorted by quickest convergence, candidate optimizers
are Nadam, Adagrad, FTRL, Vanilla SGD, SGD with Nesterov momentum,
Adam, Adamax, AMSGrad SGD with momentum and Adadelta. As our main
goal is performing combined approximation and continuity optimization, we do
not look into optimizing hyperparameters of individual optimizers in the sole
approximation optimization target scenario.
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Fig. 1: Results for different noise levels, AMSGrad optimizer, learning rate 1.0,
dataset A, 1 segment, 1000 epochs, α = 0. Top: Derivative 0 curve shapes.
Bottom: ℓ2 losses. Optima at dashed lines.

3.3 Optimizing ℓ

Contrary to the single approximation target discussed in the previous section, we
see that a lower learning rate of 0.1 is beneficial. Chebyshev basis results again
converge to lower losses, however, now 2000 epochs are required. Increasing the
number of segments does not affect the highest possible learning rates.

Looking at the performance of all optimizers available with TensorFlow ver-
sion 2.13.0, Chebyshev basis is again clearly outperforming power basis in regard
to all relevant optimizers and input point sets. Fig. 3 in Appendix B shows this
in more detail for dataset A: While none of the optimizers manage to surpass ℓ∗2
with power basis in the given 5000 epochs, there are several optimizers achiev-
ing this with Chebyshev basis. Interestingly, however, with Chebyshev basis,
SGD does not converge in this combined approximation and continuity opti-
mization target any longer. Results with regularization of Ck-loss, as introduced
in Sect. 2.2, clearly outperform results without Ck-loss regularization for candi-
date optimizers.

Running experiments with all datasets and noise levels defined in Table 1, we
see the trend that more optimizers (also with power basis) manage to surpass
the ℓ∗2 baseline for input data with higher ℓ∗2 values. Experiments also clearly
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show that results with regularization of Ck-loss outperform results without Ck-
loss regularization for candidate optimizers also for datasets other than dataset
A. The higher ℓ∗2 of the input data, the closer is the gap between regularized
and non-regularized losses, as well as power basis and Chebyshev basis results.
Considering all observed input data, AMSGrad with default parameters is the
best candidate for both polynomial bases in this combined approximation and
continuity optimization target. Since spikes in its total loss curve frequently
occur after the optimizer has reached lowest remaining losses, however, early
stopping with reverting to the best PP coefficients achieved for the training run is
strongly recommended. Investigating different methods of initializing polynomial
coefficients (ℓ2 optimum, zero, random), ℓ2 optimum initialization turns out to
be the best choice.

A simple approach for Ck-continuous solutions would be to apply Algorithm 1
to the segment-wise ℓ2 optimum. However, looking at ℓ2 versus ℓCK error for
different datasets, as depicted in Fig. 2 for dataset A, we find that strictly es-
tablishing continuity using Algorithm 1 for a result with α = 0 increases the
remaining approximation error significantly. Strictly establishing continuity for
an optimization result with α > 0, on the other hand, affects prior approxima-
tion errors only mildly. This is an important finding, as it not only substantiates
the need for ℓCK optimization, but also tells us that if we strictly establish con-
tinuity after optimization, it is beneficial to choose an α value that is greater
but close to 0.

Looking at the experimental setup of Fig. 2, the margin between remaining
approximation error ℓ∗2 of a conventional segment-wise least squares fit and ap-

proximation error ℓ̃∗2 of this fit after strictly establishing continuity via algorithm
is higher for input data with higher variance. Taking this margin as a baseline,
higher variance input data leaves us with with a wider band of where our op-
timization leads to better results than performing a conventional segment-wise
least squares fit with strict continuity establishment. In case of a wider band,
we can also have a wider range of α values that make sense. Leaving out some
scenarios where local optima of higher α values have a lower approximation error
than lower ones, we generally see a tendency of rising approximation errors with
rising α values. Considering the experimental setup of Fig. 2, the two bottom
plots show results for input dataset A with a noise scale of 0.5. Here, we observe
results that lie within the aforementioned margin throughout the complete α
range 0 ≤ α ≤ 1. Without noise, as shown in the two top plots, the ℓ∗2 value
of the input data is lower, and we see α values of >≈ 0.3 tendentially having
ever higher approximation errors, thus leaving the margin, which leaves us with
a smaller range of possible values of α that make sense.
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Fig. 2: Continuity over approximation error for ℓ2 initialization with learning
rate = 0.1, α = 0.1, dataset A, 2 segments, 2000 epochs and early stopping
enabled with a patience of 500. Top: Noise scale = 0. Bottom: Noise scale = 0.5.

4 Conclusion and Outlook

Our results show that optimization of PPs utlizing Chebyshev basis clearly out-
performs power basis with tested data sets and various noise levels. Increasing
the number of polynomial segments can further boost this advantage, as Cheby-
shev basis benefits from input data with lower variance. Considering its better
performance with degree 7 polynomials, this also makes Chebyshev basis the
favorable candidate for the generation of C3-continuos PP position profiles for
the use in electronic cam approximation, as a polynomial degree of 7 is required
to strictly establish C3-continuity after optimization using Algorithm 1. Looking
at Chebyshev basis convergence results for different data sets, we see that the
regularization method introduced in Sect. 2.2 is required to reduce oscillating
behavior and boost optimizer performance.

As outlined in section Sect. 2.4, setting α > 0 leaves us with a non-convex
optimization problem prone of getting stuck in unfavorable local optima. Ex-
perimental results documented in Sect. 3 show, however, that we can effectively
guard against this by (i) pre-initializing polynomial coefficients with the segmen-
t-wise ℓ2 optimum, (ii) applying early stopping and reverting to best PP coeffi-
cients achieved during the training run and (iii) strictly establishing continuity
after optimization with α > 0 running the algorithm introduced in Sect. 2.3.
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Our results show that strictly establishing continuity for a result with α = 0
increases the remaining approximation error significantly, while a result with
α > 0 is only affected mildly. This substantiates the need for ℓCK optimization
also when strictly establishing continuity after optimization.

Looking at possible future work, additional terms in ℓ can accommodate
for further domain-specific goals. For instance, we can reduce oscillations in f
by penalizing the strain energy ℓstrain =

∫
I
f ′′(x)2 dx , which, in the context

of electronic cams, can reduce induced forces and energy consumption. While
our approach benefits from optimizers provided with modern ML frameworks, it
also has the potential of contributing back to the field of ANNs. In their preprint
[5], Daws and Webster initialize Neural Networks via polynomial approximation
using Legendre basis and show that subsequent training results benefit from such
an initialization. Our approach could be used for such an initialization. Also, our
approach is compatible to other iterative ML methods. In this way, we can utilize
it for Reinforcement Learning (RL) methods based on policy gradients, like
Trust Region Policy Optimization or Proximal Policy Optimization, and model
the policy landscape using multivariate polynomials in an effort of improving
sample efficiency of modern RL algorithms.

Appendix A Strictly Establishing Continuity

Algorithm 1 CKMIN: Strictly Establish Ck-Continuity

Input: PP, k ▷ Piecewise polynomial, continuity class

1: procedure CKMIN()
2: (p1, . . . , pm)← PP ▷ m polynomial pieces
3: for i← 1 to m do ▷ Correct all pi over [ξi−1, ξi]

4: AL ←
(

j!
(l−j)!

ξl−j
i−1

)k,2k+1

j,l=0,j
▷ Left conditions at ξi−1

5: AR ←
(

j!
(l−j)!

ξl−j
i

)k,2k+1

j,l=0,j
▷ Right conditions at ξi

6: bL ←

({
0 if i = 0

p
(j)
i−1(ξi−1)− p

(j)
i (ξi−1) otherwise

)k

j=0

▷ Match pi−1

7: bR ←

0 if i = m
p
(j)
i+1(ξi)−p

(j)
i (ξi)

2
otherwise

k

j=0

▷ Match mean of pi, pi+1

8: A, b←
(
AL

AR

)
,

(
bL

bR

)
▷ Stacking equation systems

9: c← A−1 · b ▷ Solve A · c = b for c
10: qi ←

∑2k+1
j=0 cjx

j ▷ Corrective polynomial
11: pi ← pi + qi ▷ Apply correction
12: end for
13: return (p1, . . . , pm) ▷ Ck-continuous piecewise polynomial
14: end procedure
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Appendix B Optimizer Performance

Fig. 3: Losses over epochs with different optimizers with learning rate = 0.1,
α = 0.1, dataset A, 2 segments. Dashed lines denote ℓ2 + ℓCK for the respective
segment-wise least squares optimum.
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Abstract. The security-constrained alternating current optimal power
flow problem (SC-ACOPF) involves determining the minimum-cost op-
erating conditions for power systems while ensuring system security. This
problem is challenging due to its formulation as a large-scale, non-linear,
and non-convex model, presenting difficulties for traditional optimization
approaches. In this study, we introduce an approximate-and-optimize
method to tackle the SC-ACOPF. We decompose the SC-ACOPF model
into a two-stage problem formulation, where the first stage addresses the
base case, and the second stage focuses on post-contingency decisions.
To handle the complexity, we employ a neural network to approximate
the objective cost associated with all contingencies. Subsequently, we
optimize the first-stage problem after incorporating the neural network
surrogate function. Computational experiments conducted on a 500-bus
system showcase the effectiveness of our proposed framework. The results
demonstrate its superior performance compared to baseline algorithms,
achieving a remarkable 60% reduction in computational time and a 50%
decrease in objective costs.

Keywords: Security-constrained alternating current optimal power flow
· Approximate-and-optimize · Neural networks · Surrogate function.

1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) is dedicated to deter-
mining an economically optimal operating configuration for power system con-
trollers while adhering to essential physical constraints. In order to mitigate the
risk of system failure, practitioners commonly adopt a pre-contingency strategy
by incorporating security constraints. The widely utilized N−1 security criterion
ensures that the power system remains operational even in the event of the fail-
ure of a single generator or branch. This gives rise to the Security-Constrained

⋆ Corresponding author: wangakang@sribd.cn
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ACOPF (SC-ACOPF) problem, which poses a formidable challenge due to its
formulation as a large-scale, non-linear, non-convex, and potentially non-smooth
model. The complexity of the model escalates with the number of contingencies,
making the SC-ACOPF problem particularly demanding to address. However,
operational requirements dictate frequent solutions to SC-ACOPF problems to
maintain stable and economically efficient power system operation. This neces-
sity propels our efforts to develop an efficient and scalable algorithm capable of
delivering high-quality feasible solutions to the SC-ACOPF.

In this study, our attention is directed towards the SC-ACOPF problem as
addressed in the Grid Optimization (GO) competition [6]. The targeted SC-
ACOPF problem is conceptualized as a two-stage stochastic optimization prob-
lem. In the first stage, the objective is to determine cost-effective bus voltage
magnitudes, bus voltage angles, active and reactive power from generators, and
controllable shunt susceptances under normal operating conditions. The sec-
ond stage comes into play during contingencies, where the aforementioned set-
tings are adjusted, and violations of second-stage constraints are penalized in
the objective function. Addressing a multitude of contingencies necessitates the
adoption of filtering methods, as seen in prior works such as [11, 8, 3]. However,
existing filtering strategies either involve iterative procedures or can only handle
a limited number of contingencies. An alternative approach proposed by the au-
thors of [19] involves the elimination of second-stage variables and constraints.
They establish a mapping between first-stage variables and second-stage costs
using a quartic approximation function, resulting in a considerably reduced for-
mulation that requires solving. Despite its merits, this approach has two notable
drawbacks:

i. the necessity for updating approximation functions in each iteration leads to
solving numerous small yet nonlinear optimization problems;

ii. a quartic approximation might not accurately capture the intricate nature
of the second-stage cost function.

Recently, machine learning techniques have emerged as powerful tools for
tackling ACOPF problems, both through end-to-end prediction and by enhanc-
ing the efficiency of existing optimization algorithms [26]. Similar advancements
have extended to the domain of SC-ACOPF problem-solving. To address a large
number of contingency scenarios, the work of [7] proposed data-driven methods
for fast contingency selection. However, this approach might produce SC-ACOPF
solutions that violate security constraints. To mitigate this issue, the work of [22]
suggested a two-step process: first predicting network voltage magnitudes and
angles of buses using a multi-input multi-output random forest model and then
calculating the remaining variables by solving physics-based power flow equa-
tions. The authors of [22] demonstrated the effectiveness of their approach on a
500-bus system. Despite its success, it is essential to note that the random forest
model might predict voltages and angles in a way that the resulting system of
power flow equations has no solution, potentially leaving practitioners without
complete SC-ACOPF solutions.
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Since SC-ACOPF can be viewed as a two-stage stochastic program, we review
how machine learning techniques enhance the solving of stochastic programs.
In the work of [10], a learning-based approach is proposed to address two-stage
stochastic Mixed-Integer Linear Programs (MILPs). The authors leverage a neu-
ral network with Rectified Linear Unit (ReLU) neurons to approximate the ex-
pected cost function. This results in a model that can be easily translated into an
MILP, facilitating optimization through commercial MILP solvers. However, it
is important to note that if the first-stage problem involves non-linear and non-
convex constraints, the resulting model would be converted into a mixed-integer
non-linear program, posing challenges in terms of computational handling.

Fig. 1. A schematic of the approximate-and-optimize framework. The expected cost
function is approximated by a neural network NNK(x0; l), and is directly embedded
into the first-stage model.

In this study, we introduce an innovative machine learning-based approximate-
and-optimize method to efficiently derive high-quality, feasible solutions for the
SC-ACOPF. The entire process is illustrated in Fig. 1. Following a similar strat-
egy to [19], we decompose the SC-ACOPF model into a first-stage problem repre-
senting the base case and a second-stage problem associated with contingencies.
Here, x0 (X0) and xk (Xk) denote decision variables (feasible regions), respec-
tively. In contrast to direct prediction methods, we employ regularized neural
networks featuring smooth activation functions to approximate the second-stage
cost. The well-trained neural network function, denoted as NNK(x0; l), acts as
a surrogate and seamlessly integrates into the first-stage problem, yielding a
non-linear, smooth, and non-convex model of significantly reduced size. Subse-
quently, the resulting problem, incorporating an explicit neural network function
in the objective, is solved using off-the-shelf non-linear solvers, such as Ipopt [28].
The proposed method aligns with the category of integrating data-driven sur-
rogate models into mathematical optimization [17]. It is noteworthy that our
approximate-and-optimize method exhibits versatility, making it applicable to
various problems formulated as continuous two-stage stochastic programs [16].

We summarize the distinct contributions of our work as follows.

– We propose a learning based approximate-and-optimize framework to effi-
ciently identify high-quality solutions to SC-ACOPF problems.
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– We propose to utilize smooth and regularized neural networks as approxi-
mation functions to alleviate the computational burden and boost perfor-
mances.

– We conduct computational experiments on a 500-bus network from the GO
Competition and demonstrate that our proposed method can produce high-
quality base case solutions faster than baseline methods.

The remainder of the paper is organized as follows. Section 2 introduces an
SC-ACOPF formulation of our interest. Section 3 presents the approximate-
and-optimize framework and the neural network models. Section 4 reports our
computational results and associated datasets. We conclude in Section 5 with
some final remarks.

2 Problem Formulation

In this work, we adopt the SC-ACOPF formulation proposed in the GO Compe-
tition. For a detailed formulation, readers are referred to [6]. Let K denote a set
of contingencies, and we use subscripts 0 and k ∈ K to represent the base case
and a contingency case, respectively. The decision variables x encompass bus
voltage magnitudes and angles, active and reactive power from generators, and
controllable shunt susceptances. The SC-ACOPF model of interest is presented
in (1):

min
x0,s

g
0 ,s

h
0xk,s

g
k,s

h
k

C(x0) + C0

(
sh0 , s

g
0

)
+

1

|K|
∑
k∈K

Ck

(
shk , s

g
k

)
(1a)

s. t. h0(x0) = sh0 , g0(x0) ≤ sg0, sg0 ≥ 0 (1b)

hk(xk) = shk , gk(xk) ≤ sgk, sgk ≥ 0 ∀k ∈ K (1c)

ϕk(x0, xk) = 0 ∀k ∈ K (1d)

The equality constraints h(x) = 0 define power flow into lines and transform-
ers, power flow balance at generators, while the inequalities g(x) ≤ 0 enforce line
current ratings and transformer power ratings constraints. Slack variables sh and
sg are introduced to quantify the violation of constraints h(x) = 0 and g(x) ≤ 0,
respectively, as shown in (1b) and (1c). These slack variables are then penalized
in the objective (1a).

Constraints (1d) establish relationships between the decision variables x0 in
the base case and their counterparts xk during contingency k. The real and
reactive power of each generator in a post-contingency state are subject to con-
straints imposed by two controllers: a droop control system and a voltage-control
system [2]. In particular, the adjustment of real power in the post-contingency
state follows a predefined droop slope while being confined within its opera-
tional bounds. Mathematically, this adjustment is captured by complementarity
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constraints as depicted in (2).

ρ+g,k − ρ−g,k = pg,k − (pg,0 +Agδk),

0 ≤ ρ−g,k ⊥ P g − pg,k ≥ 0,

0 ≤ ρ+g,k ⊥ pg,k − P g ≥ 0,

(2)

where pg,0 and pg,k denote the active power for generator g in the base case and
contingency k, respectively. The variable pg,k is bounded by P g and P g. Ag is
the predefined droop slope for generator g, and δk is the frequency deviation in
contingency k.

Furthermore, if a generator is active in a contingency, it will attempt to
maintain its bus voltage as in the base case by adjusting its reactive power,
unless it reaches the operational bound. The resulting constraints are formulated
in (3):

ν+n,k − ν−n,k = vn,k − vn,0,

0 ≤ ν−n,k ⊥ Qg − qg,k ≥ 0,

0 ≤ ν+n,k ⊥ qg,k −Q
g
≥ 0,

(3)

where vn,k and vn,0 are the voltage for bus n in contingency k and the base case,
respectively. The variable qg,k represents the reactive power for generator g in
contingency k, with lower bound Q

g
and upper bound Qg. ν

+
n,k and ν−n,k are the

voltage increase and decrease from the base case for bus n in contingency k.
Let piece-wise linear functions C(x), C0(s

h
0 , s

g
0) and Ck(s

h
k , s

g
k) denote the

operating cost for generators, penalty cost for the base and contingency cases,
respectively. The SC-ACOPF problem aims to find operating conditions for the
base case and every contingency case, such that relevant power system con-
straints are satisfied and the total cost is minimized.

We are faced with three main challenges when solving model (1).

i. Large size. The number of variables and constraints grows proportionally
with the size of the contingency set K, which is of the same order of mag-
nitude as the number of buses and branches in a power network. Hence, (1)
usually becomes a very large-scale optimization model even for a small-sized
power system. For example, in the GO Competition, networks with thou-
sands of generators, buses, and branches are considered, and the correspond-
ing SC-ACOPF problems can have millions of variables and constraints.

ii. Non-linearity and non-convexity. Functions h(x) and g(x) rely on prod-
ucts of variables and trigonometric functions to describe power flow. As a
result, the feasible region is highly non-linear and non-convex.

iii. Complementarity. A large number of complementarity constraints ϕk(x0, xk) =
0 exist, but mathematical programs with complementarity constraints are
notoriously difficult to solve due to the non-satisfaction of constraint quali-
fication [21], such as the Mangasarian–Fromovitz constraint qualification.

Therefore, solving such a large-scale, non-linear and non-convex program (1)
is extremely demanding.
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3 Solution Approach

3.1 An Approximate-and-Optimize Framework

We first cast model (1) as a two-stage optimization problem as follows:

min
x0,sh0 ,s

g
0

C(x0) + C0

(
sh0 , s

g
0

)
+ rK(x0)

s. t. constraints (1b),
(4)

where rK(x0) is defined as

rK(x0) := min
xk,shk ,s

g
k

1

|K|
∑
k∈K

Ck

(
shk , s

g
k

)
s. t. constraints (1c) - (1d).

(5)

Specifically, the constraints and objective penalties associated with contingen-
cies are collectively replaced by a single function rK(x0) in (4) and (5). This
function represents the optimal value for the second-stage optimization problem
and is dependent solely on the base case solution x0. Consequently, the model
size of (4) is significantly smaller than that of (1). Unfortunately, obtaining a
closed form for rK(x0) is not feasible. Given a fixed x0, evaluating rK(x0), as
shown in model (5), involves solving |K| independent ACOPF-like optimization
problems in parallel. Using this, one can collect samples {x1

0, x
2
0, ..., x

m
0 } from

the x0 space and obtain {r(x1
0), r(x

2
0), ..., r(x

m
0 )}. Motivated by the well-known

universal approximation theorem [14], we choose to approximate the function
rK(x0) using neural networks.

For a given set of contingencies K, the system load vector l (including active
and reactive power of load buses), and a base case solution x0, the function
rK(x0) is approximated by a well-trained neural network function NNK(x0, l).
This neural network is explicitly embedded into model (4) as a surrogate func-
tion for rK(x0). Subsequently, off-the-shelf nonlinear optimization solvers can be
employed to address the resulting problem (6) and obtain a high-quality solution
x0. This methodology is referred to as an “approximate-and-optimize” method.

min
x0,sh0 ,s

g
0

C(x0) + C0

(
sh0 , s

g
0

)
+NNK(x0; l)

s. t. constraints (1b).
(6)

The proposed approximate-and-optimize framework offers several advantages
when tackling SC-ACOPF problems:

– Only variables and constraints associated with the base case are involved in
model (6), and all information related to each contingency is incorporated
into a single approximation term. This reduction in problem size significantly
facilitates solution efforts.

– The use of an approximation term eliminates complementarity constraints (1d),
which are known to pose considerable challenges for state-of-the-art nonlin-
ear optimization solvers.
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– The resulting model (6) takes a form similar to classic ACOPF models,
allowing the utilization of well-developed techniques, such as interior point
methods, commonly employed for ACOPF problems [23].

3.2 Neural Networks

In the approximate-and-optimize framework for solving SC-ACOPF problems,
we leverage fully connected Neural Networks (NNs) to approximate rK(x0). An
NN consists of multiple layers of inter-connected neurons. Data is fed into the
input layer in an NN and passes through several parameterized hidden layers,
ultimately returning an output. Activation functions introduce non-linearity and
often non-convexity, enabling neural networks to approximate complex functions
with the desired accuracy. The design of a properly engineered loss function is
crucial, as it is minimized to identify well-parameterized NNs that effectively
capture the relationship between inputs and outputs. It has been established
that, under very mild assumptions, NN models exhibit the universal approxima-
tion property [24, 25].

Fig. 2. An NN designed for approximating the contingency penalty in SC-ACOPF.

Using historical data x0, we first compute rK(x0) and then train a neural
network to serve as an approximation function for rK(x0). In this study, neural
networks with two hidden layers are employed to approximate rK(x0), repre-
sented as in (7). Specifically, as illustrated in Fig. 2, the power system load
vector l is concatenated with the base case variables x0 and fed into an NN as
the input. Let Wh and bh denote weights and bias for the h-th layer, and σ
represent the activation function.

NNK(x0; l) := σ (σ ([x0, l]W1 + b1)W2 + b2)W3 + b3 (7)

Once a well-trained neural network NNK(x0; l) is obtained, it can replace rK(x0).
Notably, in the SC-ACOPF problem of interest, the power system load vector
l is given, making NNK(x0; l) solely dependent on x0 and easily incorporated
into model (6). Regularized neural networks with smooth activation functions
are adopted, resulting in a model (6) suitable for interior point methods.
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Smooth Activation Function Since model (6) will be solved using an in-
terior point method, the function NNK(x0; l) needs to be smooth, preferably
twice differentiable. To achieve this, we opt for the Gaussian Error Linear Unit
(GELU) [13], a smoother variant of rectified linear units [18], as the activation
function. The GELU formula is defined as (8).

GELU(y) := yΦ(y), (8)

Here, Φ(y) := P(Y ≤ y) represents the cumulative function with Y following a
standard normal distribution. The GELU activation function is smooth, twice
differentiable, non-convex, and exhibits curvature at all points [15]. With these
desirable properties, GELU activation functions have demonstrated their effec-
tiveness in various state-of-the-art neural network architectures, such as GPT [4,
20].

Regularization To mitigate numerical challenges when solving model (6), we
opt to incorporate regularization into NN training. Gradient regularization is
a widely used method for preventing overfitting and enhancing smoothness by
penalizing substantial changes in the output of a neural network [9, 12]. This reg-
ularization technique has demonstrated its efficacy in promoting stable training
processes and improving classification accuracy in computer vision tasks, partic-
ularly when dealing with small training datasets [27]. We propose to regularize
the input gradient, ∇x0

NNK(x0; l). The loss function during training is then
defined as follows:

Loss
(
x0, {Wh}Hh=1

)
:= (NNK(x0; l)− rK(x0))

2
+ λ ∥∇x0

NNK(x0; l)∥22 .

4 Computational Experiments

4.1 Test Set-up

All experiments in this section were conducted on a server equipped with a
12th Gen Intel(R) Core(TM) i9-12900K and NVIDIA GeForce RTX 3090 GPU.
We utilized Ipopt version 3.14.13 [28], operating with the linear solver MUMPS
5.6.0, as the nonlinear solver for all experiments. The training of neural networks
was performed using PyTorch v2.0.1, and Scikit-learn 1.2.2 was employed for
various tasks related to machine learning. We make our code publicly available
at https://github.com/NetSysOpt/Approximate-and-Optimize-for-SCOPF.

4.2 Baseline

The PowerModelsSecurityConstrained.jl v0.10.0 [5] serves as the baseline algo-
rithm in the GO competition, and we adopt it as our benchmark algorithm,
denoted by Benchmark. This algorithm commences by solving a Direct Current
Optimal Power Flow (DCOPF) problem, and the solution is then utilized to for-
mulate an SC-DCOPF problem. Solving this SC-DCOPF problem provides an
initial solution for the SC-ACOPF. Subsequently, an ACOPF problem is solved
as a post-processing step to obtain the final solution for the base case.
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4.3 Dataset Generation

We have chosen the Network 01R-10 instance from the GO competition datasets [1]
to create a benchmark dataset. This particular instance features 500 buses, 599
branches, 90 generators, 51 generator contingencies, and 326 branch contingen-
cies. In practical scenarios, the set of contingencies is typically predefined by
experts and often includes the failure of individual vulnerable generators and
branches. Therefore, for our dataset, the contingency set remains the same for
every instance. We introduce perturbations to the load demand of each bus by
a factor uniformly distributed over [0.9, 1.1], resulting in a total of 50 instances.

To generate the dataset for training the surrogate neural network for the
contingency penalty, we need to collect feasible base case solutions, which will
serve as part of the input to the neural network. In practice, feasible base case
solutions can be obtained from historical data for a specific power network under
various load profiles. In this work, we follow the procedure outlined below. First,
we execute the Benchmark algorithm to obtain a feasible base case solution x̂0.
Next, we randomly sample a subset of bus nodes and generators, and denote the
indices of these variables as I. We then perturb the voltage, active power, and
reactive power of the sampled buses and generators by factors uniformly sampled
from [0.9, 1.1], denoted as x̂0,I . Subsequently, a feasible base case solution is
obtained by solving model (9).

min
x0,sh0 ,s

g
0

∥x0,I − x̂0,I∥22 + ∥sh0∥22 + ∥sg0∥
2
2

s.t. constraints (1b)
(9)

For each collected x0, we solve the second-stage problem (5) using the Benchmark
algorithm and obtain rK(x0). The histogram of log10(rK(x0)) is presented in
Fig. 3. Notably, the values of rK(x0) concentrate around 1.2× 106.
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Fig. 3. Histogram of log10(rK(x0)) in the training data.

4.4 Configuration

We trained our neural networks using the Adam optimizer with a learning rate
of 3× 10−4 and a batch size of 64 for 1000 epochs. The parameter λ was chosen
from the set {10−1, 10−2, 10−3, 10−4, 10−5}. For the neural network architecture,
we considered a simple two-layer fully connected neural network with N hidden
neurons, where N ∈ {16, 32, 64, 128}. We generated 100 scenarios for training, 20
scenarios for validation, and 50 scenarios for testing. In each training scenario,
50 feasible base case solutions were collected. After training and validation, the
neural network with 16 hidden neurons in the first layer, 64 hidden neurons in
the second layer, and λ = 10−3 was chosen in the surrogate function NNK(x0; l).
The corresponding approximate-and-optimize algorithm is denoted by A&O-NN.
To illustrate how utilizing neural networks with regularization as approximation
functions affects algorithmic performance, we replaced them with the following
two surrogate functions:

– A&O-Lasso: a lasso model;
– A&O-NN(w/o reg.): a neural network that has the same architecture but is

trained without regularization.

4.5 Results and Discussion

We present the computational results in Table 1. Columns “Gen. Cost”, “Base
Penalty”, and “Contingency Penalty” represent geometric means of generation
costs, constraint violation penalties for the base case and contingencies, respec-
tively. The total objective cost (geometric mean) and its normalized value (with
respect to A&O-NN) are reported in columns “Obj.” and “Ratio”, respectively. The
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average total time (including reading data, loading and solving models, writing
solutions, and solving sub-problems) across 50 testing instances is reported in
column “Time (sec)”, while its breakdown is displayed in Fig 4.

Table 1. Computational results for the 500-bus system

Method Gen. Cost
Penalty

Obj. Ratio
Time
(sec)

Base Contingency

A&O-NN 46, 196 0.32 561, 824 608, 038 1.00 12.0

Benchmark 34, 427 0.03 1, 362, 096 1, 396, 569 2.30 34.6

A&O-Lasso 45, 719 0.45 1, 425, 178 1, 471, 041 2.42 12.0

A&O-NN(w/o reg.) 46, 042 0.73 621, 574 667, 634 1.10 12.8

A&O-NN Benchmark A&O-Lasso A&O-NN (w/o reg.)
Methods
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Fig. 4. The breakdown of solution times for each method. “Solve time” represents
the cumulative time for constructing and solving models in each method, while “Filter
time” represents the contingency-filtering time in Benchmark. “Other” denotes the total
time for loading the data, writing solutions to output files, and it also includes solution-
recovering time in Benchmark.

A&O-NN v.s. Benchmark Firstly, we compare the computational performances of
our proposed method against that of Benchmark. With the use of A&O-NN, the
average solution time is reduced from 34.6 seconds to 12.0 seconds. Moreover,
A&O-NN yields solutions with objective values that are 50% smaller than those
obtained with Benchmark. It is noteworthy that while the operational cost for
generators in Benchmark is smaller than that in A&O-NN, the penalty for con-
straint violations in the second-stage problem is significantly larger (the same
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order of magnitude as training samples, as indicated in Fig 3). This difference in
objective costs is expected since Benchmark follows a greedy approach that pri-
marily optimizes the base case problem, whereas our approximate-and-optimize
framework A&O-NN seeks a balance between generation costs and constraint vi-
olation penalties. Additionally, since A&O-NN involves solving a small-sized non-
linear model, its computational time is 60% less. On the contrary, Benchmark
employs a filtering procedure to introduce contingencies and needs to iteratively
solve SC-DCOPF models as well as recover feasible solutions, resulting in a
computationally expensive process, as indicated in Fig. 4.

A&O-NN v.s. A&O-Lasso To showcase the effectiveness of neural networks in ap-
proximating highly non-linear and non-convex functions, we compare the com-
putational performance of A&O-NN with that of A&O-Lasso. While A&O-Lasso

exhibits similar solution times, it incurs 1.42 times more objective costs. As
anticipated, a simple linear surrogate function lacks the capacity to accurately
approximate rK(x0). The substantial reduction in objective costs underscores
the advantage of employing sophisticated neural networks as surrogate func-
tions, enabling more informed decision-making compared to using basic linear
approximators.

A&O-NN v.s A&O-NN(w/o reg.) We now assess the impact of regularizing neural
networks by comparing A&O-NN against A&O-NN (w/o reg.). The two meth-
ods exhibit similar monetary costs. However, A&O-NN demonstrates the abil-
ity to identify solutions with smaller base and contingency penalties slightly
faster. This observation suggests that solvers, such as Ipopt, may derive benefits
from the use of regularized neural networks when addressing embedded problems
within the approximate-and-optimize framework.

Out of sample We evaluate our proposed algorithm on an out-of-sample
dataset, comparing its performance with that of Benchmark, A&O-Lasso, and
A&O-NN (w/o reg.). In this new dataset, load profiles are obtained by multi-
plying the nominal load demand by a factor sampled from [0.7, 1.3]. The com-
putational results, presented in Table 2, once again demonstrate that A&O-NN

outperforms the other three methods in producing high-quality solutions and is
computationally more efficient than Benchmark. The results affirm that A&O-NN
exhibits superior generalization capabilities, efficiently addressing SC-ACOPF
problems with previously unseen load demands.

5 Conclusions

In this study, we introduce a novel machine learning-based approximate-and-
optimize framework for addressing SC-ACOPF problems. The SC-ACOPFmodel
is systematically decomposed into a two-stage stochastic program, where the
first stage corresponds to base case decisions, and the second stage addresses
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Table 2. Out-of-sample results for the 500-bus system

Method Gen. Cost
Penalty

Obj. Ratio
Time
(sec)

Base Contingency

A&O-NN 46, 095 0.32 605, 414 651, 648 1.00 12.1

Benchmark 34, 509 0.03 1, 421, 137 1, 455, 849 2.23 32.1

A&O-Lasso 45, 699 0.49 1, 488, 845 1, 534, 974 2.36 11.8

A&O-NN(w/o reg.) 45, 628 0.8 672, 342 720, 324 1.11 12.8

post-contingency scenarios. To facilitate this, a neural network is trained using
system loads and base case decisions as inputs, incorporating smooth activation
functions and regularization techniques. The well-trained neural network is seam-
lessly integrated into the objective function of the first-stage problem, serving
as a surrogate for contingency penalties. The resulting model is subsequently
solved using established nonlinear solvers. Our proposed method is evaluated
on a 500-bus power system from the GO competition. Computational results
demonstrate the superiority of our approach, denoted as A&O-NN, outperforming
the benchmark method in the GO Competition with a 50% reduction in the ob-
jective value and a 60% decrease in computational time. It is worth noting that,
in this work, we assume a fixed contingency set for a power network across all
scenarios. In future work, we aim to incorporate dynamic contingency informa-
tion into the neural network training process. Additionally, when deploying our
approximate-and-optimize framework for larger power networks, the challenge
of a rapidly growing number of neurons in the input layers will be addressed,
requiring exploration of alternative network architectures and training strategies
for improved generalization capabilities.
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Abstract. In today's data-driven landscape, time series forecasting is
pivotal in decision-making across various sectors. Yet, the proliferation
of more diverse time series data, coupled with the expanding landscape
of available forecasting methods, poses signi�cant challenges for forecast-
ers. To meet the growing demand for e�cient forecasting, we introduce
auto-sktime, a novel framework for automated time series forecasting.
The proposed framework uses the power of automated machine learning
(AutoML) techniques to automate the creation of the entire forecasting
pipeline. The framework employs Bayesian optimization to automatically
construct pipelines from statistical, machine learning (ML) and deep
neural network (DNN) models. Furthermore, we propose three essential
improvements to adapt AutoML to time series data. First, pipeline tem-
plates to account for the di�erent supported forecasting models. Second,
a novel warm-starting technique to start the optimization from prior opti-
mization runs. Third, we adapt multi-�delity optimizations to make them
applicable to a search space containing statistical, ML and DNN models.
Experimental results on 64 diverse real-world time series datasets demon-
strate the e�ectiveness and e�ciency of the framework, outperforming
traditional methods while requiring minimal human involvement.

Keywords: Automated Machine Learning · Time Series · Forecasting.

1 Introduction

Time series forecasting is crucial for applications like economics, �nance, and
manufacturing. It involves analyzing historical data and using statistical, ma-
chine learning (ML) or deep neural network (DNN) models to predict future
trends. With accurate forecasts, businesses can e�ciently allocate resources, plan
production schedules, and manage inventories, reducing waste and costs. More-
over, time series forecasting can help manufacturers detecting potential issues
before they become problematic. For example, predictive maintenance models
can analyze sensor data to anticipate when a machine will need maintenance.

Due to the tedious and error-prone process of creating well-performing mod-
els [3], organizations struggle to create forecasting models. This issue is further
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ampli�ed by a shortage of skilled data scientists [2]. This has led to an increasing
demand for automation that can enable businesses to develop accurate forecast-
ing models without requiring a high level of technical expertise. Automated
machine learning (AutoML) is an emerging �eld aiming to automate the process
of creating, evaluating, and deploying ML models. By leveraging heuristics and
techniques from optimization theory, AutoML tools search for the best models
and hyperparameters to create accurate forecasts with minimal human interac-
tion. Optimally, the AutoML system provides a complete end-to-end automation
covering steps like data cleaning, model selection, and hyperparameter tuning.

More formally, AutoML aims at generating a pipeline, described by its hy-
perparameters λ⋆, minimizing

λ⋆ ∈ argmin
λ∈Λ

L(Dtrain,Dvalid,λ) (1)

with Λ the con�guration space containing all possible hyperparameter combina-
tions, L a validation loss function, and D a dataset split into a train (Dtrain) and
validation part (Dvalid). In general, the features of Equation (1) are not known
as they depend on D, making the use of e�cient solvers impossible.

While prior work on AutoML mainly focused on classi�cation and regression,
e.g., [15,17], some work has been done to apply AutoML techniques to time
series forecasting, e.g., [14,40,42]. Yet, those methods mainly apply AutoML
procedures developed for tabular data to time series data. Consequently, the
potential of AutoML adapted to time series is currently not fully utilized. For
example, multi-�delity approximations, which are an integral part of AutoML
[16], usually use either a random subset of the training data or a number of
�tting iterations as budget. Yet, both are not easily applicable to time series:
random subsets distort the temporal relation of the data, and many forecasting
models do not support iterative �tting. Therefore, we propose auto-sktime,
an AutoML framework for end-to-end time series forecasting. Our contributions
can be summarized as follows:

1. We propose auto-sktime, a framework combining statistical, ML, and DNN
state-of-the-art (SOTA) techniques for time series forecasting, making it ap-
plicable to a wide range of time series. We use a templating method to select
appropriate pipelines given the input data. Each template encodes speci�c
best practices to ensure an e�cient yet �exible creation of pipelines.

2. We propose a novel method for warm-starting the AutoML optimization
based on prior optimizations to increase the sampling e�ciency of the op-
timization. While this method is speci�cally designed for time series, it can
also be transferred to other AutoML problems like classi�cation.

3. Current multi-�delity optimization techniques are not applicable to com-
mon time series data. We propose a novel multi-�delity budget enabling the
bene�ts of multi-�delity approximations for all kinds of time series data.

The rest of this work is structured as follows: Section 2 introduces related
work in time series forecasting and AutoML. The proposed auto-sktime frame-
work is described in Section 3 and validated in Section 4. Finally, the results are
discussed in Section 5.
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2 Background and Related Work

First, we provide an introduction to existing forecasting models and techniques
for automating time series forecasting. Finally, we also provide a short introduc-
tion to Bayesian optimization.

2.1 Models for Time Series Forecasting

The �rst approaches for time series forecasting used statistical models like au-
toregressive integrated moving average (ARIMA), exponential smoothing (ES),
and seasonal decomposition (STL). These models assume that future observa-
tions are related to past observations and can be predicted using the patterns
observed in the data. The ARIMA model [5], for example, captures the autocor-
relation in the data and uses it to predict future observations. ES [36] assigns
di�erent weights to past observations, with more recent observations being given
more weight. STL models decompose the time series into seasonal, trend, and
residual components [21]. While statistical models o�er interpretability and in-
sights into the underlying dynamics of the data, they often struggle to handle
complex relationships between variables [21].

ML models have gained signi�cant attention in time series forecasting due to
their ability to capture complex patterns and making fewer assumptions about
the data. By modeling time series forecasts as a regression problem, supervised
learning methods can be applied. Time series forecasting has seen extensive ex-
ploration of various ML models, such as random forests [34] or gradient boosting
trees [22]. ML models o�er �exibility, scalability, and the potential to handle
diverse time series data with varying characteristics [31]. However, achieving
success with them often requires careful tuning of hyperparameters and access
to large amounts of training data [22], which usually is not available if only a
single time series is considered.

More recently, DNNs have emerged as powerful models for time series fore-
casting due to their ability to model temporal relations within the data. Specif-
ically, recurrent neural networks (RNNs), like long-term short memory (LSTM)
[18] and gated recurrent units (GRU) [12], have shown remarkable performance
in capturing long-term dependencies in sequential data [48]. Alternatively, trans-
formers have been applied more recently to time series forecasting [50]. Addition-
ally, feedforward networks can forecast time series by transforming the sequential
input into a �xed-size feature representation [4]. However, the successful appli-
cation of neural networks for time series forecasting requires careful architecture
design, appropriate activation functions, and regularization techniques. Ongo-
ing research focuses on hybrid architectures, ensemble methods, and attention
mechanisms to enhance the forecasting accuracy of DNN models, e.g., [50].

2.2 Automated Time Series Forecasting

Extensive studies have examined how to automate the creation and �ne-tuning
of statistical time series forecasting algorithms. For example, researchers have
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employed the Box-Jenkins methodology [5] to �nd optimized ARIMA models
while the state-space methodology [36] can be applied to ES models. Yet, this
prior work does not consider automating the selection of the underlying sta-
tistical model. The demand for automation in forecasting increases due to the
various processes generating time series data and the ever-increasing number of
models for time series forecasting (ML and DNN models).

While researchers have proposed various AutoML approaches, the majority
of these focus on standard learning tasks such as tabular or image classi�cation,
e.g., [15,17]. These approaches typically treat the generation of ML pipelines
as a black-box optimization problem: Given a dataset D and loss function L,
AutoML searches within a search space Λ to �nd a pipeline λ⋆ minimizing the
validation loss. Researchers often address this optimization process using sample-
e�cient Bayesian optimization (BO) [6]. Yet, time series forecasting, especially
when forecasting single univariate time series, often has too little training data
for complex regression models.

Multiple dedicated AutoML frameworks for time series forecasting exist.
TSPO [13] transforms the forecasting problem into a tabular regression problem
compatible with standard AutoML. Auto-PyTorch [14] constructs ensembles
of DNNs. While it contains many standard features from AutoML�like multi-
�delity approximations and ensemble learning�it con�nes itself to DNNs. [42]
propose automatic forecasting of time series based on genetic optimization. By
combining statistical and ML models to a single search space, forecasting of time
series panel data is possible. Similarly, AutoTS [10] also employs genetic opti-
mization combined with creating an ensemble of evaluated candidates. BOAT
[24] uses BO to automatize the creation of statistical and ML models. The opti-
mization is warm-started using the typical AutoML approach via meta-features
of the given dataset. HyperTS [49] also uses genetic optimization of statistical
and DNN models combined with a greedy ensemble construction for univariate
and multivariate time series. AutoGluon-TS [41] combines DNNs, ML, and
statistical models for forecasting. Finally, AutoAI-TS [40] o�ers an end-to-end
automation for forecasting of univariate and multivariate time series. However,
it uses a �xed ensemble of diverse models and does not optimize an internal
objective function as it is characteristic for AutoML. Similarly, PyAF [8] builds
best-practice pipelines by combining di�erent preprocessing steps with ML re-
gression models using their default hyperparameters.

While di�erent approaches of AutoML for forecasting exist, no framework
combines all SOTA performance improvements of AutoML frameworks�namely
ensembling, multi-�delity approximations, and meta-learning. Frameworks that
implement some of these improvements usually do not adapt them to the time
series data format. With auto-sktime, we aim to overcome these limitations.

2.3 Bayesian Optimization

Bayesian optimization (BO) [6] is often used to solve the AutoML optimization
problem described in Equation (1). It aims to �nd the global minimum of an un-
known function f : Λ → R using an initial experiment design S0 = {(λi, li)}Mi=1
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Fig. 1: General architecture of auto-sktime. Highlighted in blue are our three
proposed improvements for automatic time series forecasting.

followed by a sequential selection of new candidates λn+1 and a correspond-
ing function evaluation ln+1 = f(λn+1) to generate Sn+1 = Sn∪{(λn+1, ln+1)}.
After each new observation, a probabilistic surrogate model p(f, S1:n) of f is con-
structed. Prominent examples of p are Gaussian processes [35], random forests
[19], or Bayesian neural networks [26]. p is used in combination with an ac-
quisition function α(λ, S1:n) to select the most promising λn+1 by trading o�
exploration and exploitation. By maximizing the acquisition function

λ⋆
n+1 ∈ argmax

λ∈Λ
α (λ;S1:n, p) (2)

in each iteration, a candidate λ⋆
n+1 is selected for evaluation. Prominent exam-

ples of acquisition functions are knowledge gradients, entropy search, expected
improvements, and upper con�dence bound.

3 auto-sktime Methodology

An overview of the proposed system architecture for auto-sktime is displayed
in Figure 1. This architecture is similar to existing SOTA AutoML frameworks
[15,17]: Given the input data D, meta-learning is used to warm-start the BO,
more speci�cally SMAC [28]. The optimization loop itself generates pipeline
candidates λn+1 from the set of prede�ned templates with corresponding hy-
perparameters. Candidates are �tted using multi-�delity approximations to cal-
culate their performance ln+1. This loop is repeated until a prede�ned budget
is exhausted. Finally, an ensemble is created using ensemble selection [9]. To
adapt this methodology to time series forecasting, we need to introduce three
new ideas, highlighted in blue in Figure 1, in more detail. Yet, �rst, we present
a formal problem formulation for time series forecasting.

3.1 Problem Formulation

Let a dataset D = {Di}Ni=1 contain N ∈ N time series. Each time series Di

is de�ned by Di = {yi,1:Ti
,x

(p)
i,1:Ti

,x
(f)
i,Ti+1:Ti+H} with Ti being the number of

observations in Di and H the forecasting horizon. Let yi,1:Ti
, with y ∈ Rd,

denote the set of observed targets. In addition, let x
(p)
i,1:Ti

and x
(f)
i,Ti+1:Ti+H , with
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x ∈ X e, denote the set of observed features and forecasted features, respectively.
A forecasting model fD aims to predict future target values

ŷi,Ti+1:Ti+H = fD

(
yi,1:Ti ,xi,1:Ti+H ;λ

)
(3)

with λ being the hyperparameters describing the model. This de�nition covers
univariate and multi-multivariate time series with or without exogenous data
and even panel data containing multiple time series depending on the selected
dimensions. The quality of the forecasts l ∈ R is measured by the distance
between the predicted and actual future targets according to a loss function L.

3.2 Templates for Time Series

Historically, three general approaches for time series forecasting have been pro-
posed: statistical, ML, and DNN models. In general, it is not possible to simply
focus on just one of these approaches as no single best approach exists [30], but
the best approach depends on the actual dataset. For example, both ML and
DNN methods are not applicable for short univariate time series, while statis-
tical models are not able to generalize over panel data. In addition, as we aim
to provide end-to-end automation for time series forecasting, just selecting the
forecaster itself is not su�cient. Instead, multiple preprocessing steps for data
cleaning and feature engineering are necessary. Yet, the actual pipeline steps de-
pend on the selected forecasting method as di�erent preprocessing is necessary
for the three approaches. AutoML tools often use a single �xed pipeline struc-
ture, i.e., [15,17], which is not able to capture the wide variety of potential input
data, i.e., univariate/multivariate and endogenous/exogenous/panel data. Al-
ternatively, AutoML tools build arbitrary pipelines with genetic programming,
i.e., [38], which is not able to capture the implicit dependencies between the
preprocessing steps and the used forecasting method.

We propose a templating approach to be used instead. Following the CASH
notation introduced by Thornton et al. [44] for a single pipeline template i,
the search space Λi aggregates a set of algorithms Ai = {A1

i , . . . , A
n
i } with

according hyperparameters Λ1
i , . . . , Λ

n
i into a single search space as Λi = Λ1

i ∪
· · · ∪ Λn

i ∪ {λi,r}, with λi,r being a hyperparameter selecting the algorithms in
Ai. Instead of using a single pipeline template, we propose a joint search space
Λ = Λ1 ∪ · · · ∪Λk ∪ {λr}, with λr selecting a pipeline, for k di�erent templates.

Although our approach would allow for an arbitrary number of templates, we
opted to implement three di�erent pipeline templates, as there are three di�erent
classes of forecasting models with di�erent requirements regarding data prepro-
cessing. Each template is inspired by best-practice pipelines in the literature,
e.g., [32]. An overview of the templates is depicted in Figure 2. While some steps
are similar for all templates, e.g., encoding of categorical features, other steps
only occur in a single template, like a reduction of time series data to tabular
data for using ML forecasters. These basic pipelines can be further expanded
with more specialized steps (e.g., [7]) in future work. No hard mapping of input
data to a pipeline template exists. Meta-learning (see Section 3.4) can steer the
optimization to a favorable combination of input data and template.



Auto-sktime: Automated Time Series Forecasting 479

 Statistical Models

 ML Models

 ANN Models

Encoding Outlier Imputation Smoothing Statistical
Forecast

Encoding Outlier ImputationDetrending Reduction Feature
GenerationSmoothing

Encoding Detrending

Normalizing

Outlier Imputation Smoothing Normalizing

ML
Forecast

DNN
Forecast

Fig. 2: Overview of the available templates. Steps marked by a solid border are
mandatory, steps marked by a dotted border are optional. For each step, multiple
algorithms with corresponding hyperparameters are available.

3.3 Multi-Fidelity Approximation for Time Series

Creating a forecast using Equation (3) can become expensive for su�ciently
large input data D as training a model with the according hyperparameters
is necessary. Especially if many forecasts have to be created, as is the case
with BO, this procedure becomes quite expensive. Often, it is possible to de�ne
easier-to-evaluate proxies f̃D(·, b) of fD(·) that are parametrized by a budget
b ∈ [bmin, bmax] with 0 < bmin < bmax ≤ 1. These multi-�delity approximations
f̃D are used in AutoML to speed up the evaluation of a single con�guration λ
by discarding unpromising models early, e.g., [25]. The lowest budget bmin is
assigned to all initial models, and higher budgets are successively assigned to
well-performing models until bmax is reached and f̃(·, bmax) = f(·).

To actually calculate f̃D, a mapping of b to a cheaper function evaluation has
to be de�ned. For tasks on tabular data often the number of training samples,
e.g., [23], or number of iterations (i.e., epochs for neural networks or number of
trees in random forests) are used, e.g., [3]. For time series forecasting, these in-
terpretations are not possible: many statistical models do not support iterative
�tting. Selecting only some of the time series for training is only possible for
panel data but not for univariate or multivariate forecasting. Similarly, reduc-
ing the length of a time series by selecting observations at random or selecting
just every n-th sample is not always reasonable, as both methods could distort
the seasonality of the data. Instead, we propose a reverse expanding window
interpretation for multi-�delity budgets.
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Fig. 3: Interpretation of multi-�delity budgets as reverse expanding windows.
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The complete procedure of reverse expanding windows is visualized in Fig-
ure 3. Given the current budget b, a desired window length lb = min(b · Ti, lmin)
is calculated. While multi-�delity approximations can speed up the evaluation of
forecasting models on long time series, the reduced computation time for short
time series is only marginal. Therefore, they are deactivated if the time series is
shorter than a user-de�ned constant lmin. Forecasts are created using only the
latest lb observations with f̃D being de�ned as

yi,Ti+1:Ti+H = f̃D

(
yi,Ti−lb1:Ti

,xi,Ti−lb:Ti+H ;λ
)
.

With increasing budgets, the window is expanding backward in time until, �nally,
the complete time series is included. The exact procedure to select budgets is
handled using successive halving [25].

3.4 Warm-Starting the Optimization

In the context of AutoML, warm-starting usually refers to the practice of using
meta-learning to initialize the optimization process with prior knowledge about
well-performing regions of the search space. This may lead to an accelerated opti-
mization convergence and potentially better-performing models. Meta-learning,
in the context of BO, is commonly implemented by using speci�c con�gurations
during initialization instead of a random initial design S0. Often, those con�gu-
rations are a portfolio of well-performing con�gurations on a variety of datasets
or similar datasets identi�ed via meta-learning [45].

Instead of using meta-learning only during the initialization and relying on
the optimizer to derive well-performing regions during the optimization, Hvarfner
et al. [20] proposed to include a user-de�ned prior π in the acquisition function,
displayed in Equation (2), to make prior information available

λ⋆
n ∈ argmax

λ∈Λ
α (λ;S1:n, p)π (λ)

β/n
(4)

with β being a decay factor to fade out the prior in longer optimizations. Hvarfner
et al. [20] were able to prove that the introduction of π(λ)β/n does not nega-
tively impact the worst-case convergence rate of BO while showing improved
performance empirically.

Equation (4) relies on user-provided priors π for each hyperparameter, which
contradicts the end-to-end automation we pursue. Furthermore, providing rea-
sonable priors, for instance, for all 98 hyperparameters included in auto-sktime,
is virtually impossible for users. We propose to automatically extract priors from
historic experiments to achieve a fully automated warm-starting instead of man-
ually crafting priors. The proposed approach is outlined in Algorithm 1.

For each element of a set of historical time series, let a set of the nc best

historic hyperparameters be given as Cmeta =
{(

{λj}nc
j=1,Di

)}k

i=1
. Furthermore,

let a new dataset Dnew be given that is going to be optimized. We aim to identify
time series Di ∈ Cmeta with a low distance d : D×D → R to Dnew(Line 1 and 2).
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Algorithm 1 Automatic prior calculation for warm-starting the forecasting.

Require: Results of optimization runs on other datasets Cmeta, new time series Dnew

1: for Di ∈ Cmeta do

2: Calculate Distance di = d(Di,Dnew); Eq. (5)
3: end for

4: Csim ← Select nd closest datasets
5: Λ′ ⊂ Λ ← Concatenate all samples {λ} from Csim
6: (Λ′,w) ← Weight λ ∈ Λ′ with di ; see Eq. (6)
7: π ← Fit KDE using {(Λ′,w)}

Instead of using a distance based on hard-to-select meta-features, as it is usually
done for tabular data, we propose to use native distance metrics for time series.
In the context of this work, a distance

d(E ,F) =
1

MN

M∑
i=1

N∑
j=1

DTW(Ei,Ti−h:Ti
, Fj,Ti−h:Ti

) (5)

based on dynamic time warping (DTW) [46] is used with M and N being the
number of time series in E and F , respectively, and h a user-provided maximum
sequence length. DTW is used to compute the optimal alignment between two
time series by �nding the warping path that minimizes the cumulative distance
between their data points. Similar distance measures would also be possible given
that time series with di�erent lengths are supported. To limit the introduced
computational overhead for long time series, only the latest h observations of
each time series are considered. Let Csim = {({λ}i,Di)}nd

i=1 ⊂ Cmeta, with nd

being a user-provided hyperparameter, denote the set of time series most similar
to Dnew (Line 4) and dnd

the set of according distances. Next, all con�gurations
selected in Csim are combined Λ′ =

⋃
{λj},·∈Csim

{λj} (Line 5). Furthermore, the
normalized distances

w = 1− dnd
−min(dnd

)

max(dnd
)−min(dnd

)
(6)

are used to weight Λ′ to give higher importance to con�gurations tested on
data very similar to Dnew. Finally, based on Λ′ and w we construct the prior π
using kernel density estimation (KDE) [11] (Line 7), modeling promising areas
of the con�guration space. As [33] were able to show that there are only a few
interactions between the di�erent hyperparameters in Λ, we also model their
priors independently using univariate KDEs. The performance of con�gurations
in Λ′ is not further considered, but only the distribution of Λ′ is relevant.

4 Experiments

To show the viability of auto-sktime, we perform a thorough evaluation on
64 real-world datasets. auto-sktime is compared with four SOTA forecast-
ing frameworks, namely PMDArima [43], ETS [36], DeepAR [39], and TFT
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[27], as a baseline. Additionally, we also test the aforementioned frameworks al-
ready employing AutoML techniques which have published source code, namely,
Auto-PyTorch (APT-TS), AutoTS, HyperTS, PyAF, and AutoGluon-
TS. In contrast to benchmarks used in the related work, we consider a mix
of univariate, multivariate, and panel data. Furthermore, we focus on rather
short time series as they are more prevalent in real-world applications [47]. Each
benchmark dataset comes with a prede�ned forecasting horizon that is used as a
holdout test set. In most cases, this forecasting horizon corresponds to one natu-
ral period, e.g., 24 observations for hourly data. The performance of each frame-
work is measured using mean absolute scaled error (MASE). All evaluations are
repeated �ve times with di�erent initial seeds to account for non-determinism.
Each evaluation was limited to a computational budget of 5minutes. Evaluations
still running after an additional grace period of 60 seconds were pruned with the
worst result produced by any of the competitors on the same dataset with an
additional small failure penalty. While these optimization durations are rather
short for typical AutoML applications, preliminary results showed �tting time
series forecasting models on the rather short datasets selected for the benchmark
often required only a few seconds, and the used DNN models converged in over
80% of all evaluations before hitting the time limit. The priors for warm-starting
are generated using a leave-one-out procedure by only considering the remaining
63 datasets for each evaluated dataset to prevent leaking knowledge. All frame-
works are used with their default parameters to emphasize the idea of end-to-end
optimization. The source code, scripts for the experiments, and detailed results
are available on Github to ensure the reproducibility of all presented results.5

4.1 Datasets

We conducted experiments using 64 real-world datasets sourced from di�er-
ent domains�including, for example, social media, �nance, and commerce�
encompassing both univariate, multivariate, and panel time series that are pub-
licly available [1,29,37]. Due to the lack of common time series forecasting bench-
mark datasets, we reused datasets used in related work. None of the selected
datasets were used during the development of auto-sktime. The number of
data samples in the univariate time series ranges from 144 to 145 366, while the
multivariate time series, with up to 111 dimensions, range from 48 to 7 588 sam-
ples. Panel datasets contain 32 to 1 428 time series with 20 to 942 samples. The
list of used datasets, with results, is available in the supplementary material.

4.2 Experiment Results

Table 1 shows the �nal test performance of all evaluations. For each framework,
the mean MASE score, ranking, and �tting time in seconds with the accord-
ing standard deviations are given. Bold face represents the best mean value.

5 See https://github.com/Ennosigaeon/auto-sktime.
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Table 1: Performance overview on all time series while enforcing timeouts.

Framework MASE Ranking Time

APT-TS 3.12± 5.41 4.51± 2.49 242.2± 134.9
auto-sktime 1.59± 1.61 3.22± 1.94 326.1± 43.4
AutoGluon 6.00± 18.17 6.74± 2.34 144.9± 160.1
AutoTS 4.26± 10.94 5.38± 2.35 321.1± 52.7
DeepAR 11.54± 51.51 7.23± 1.99 61.3± 106.0
ETS 2.57± 2.78 5.82± 2.34 2.0± 7.6

HyperTS 2.88± 5.03 4.57± 2.60 300.0± 89.4
pmdarima 2.63± 3.21 5.42± 2.62 47.1± 98.4
PyAF 3.23± 5.33 5.38± 2.56 22.6± 56.5
TFT 9.80± 50.62 6.73± 1.95 76.9± 118.3

Results not signi�cantly worse, according to a t-test with α = .05 and Bonfer-
roni correction, are underlined. auto-sktime signi�cantly outperforms all other
frameworks both regarding to the absolute performance (MASE) and rank. Sur-
prisingly, ETS and pmdarima reached a better average MASE than some of
the AutoML tools. This can be explained as the AutoML tools produced bad
results on a minor subset of the dataset while ETS and pmdarima signi�cantly
outperform them on very few data sets (see Table 1 in the online appendix).
When considering the median performance, the AutoML tools outperform the
baseline methods. This is also re�ected in the average ranking in Table 1. We
consider this a limitation of our small benchmark rather than a general issue of
AutoML tools. TFT and DeepAR perform badly due to failures on many time
series. If a prediction was created, they often have a competitive performance.

A major issue for many AutoML tools is the missing support for end-to-end
automation of time series forecasting. Multiple frameworks are missing methods
for data cleaning, e.g., imputation of missing values. As 27 time series contained
missing values, the average performance of those frameworks appears to be signif-
icantly worse. Table 2 contains the results of all tested frameworks on only time
series not necessarily requiring preprocessing and data cleaning. Most methods
achieve a better performance. As a consequence, auto-sktime does not signif-
icantly outperform many of the baseline methods anymore, even though it still
has the best average performance. Interestingly, methods likeDeepAR andTFT
even pro�ted from failing runs, as the worst performance of the competitors, on
average, is still better than their own predictions.

Another major issue was the imposed time limit of 300 seconds. Even though
a grace period of additional 60 seconds was introduced, many tools did not ad-
here to the maximum budget with single optimization runs requiring over 5 000
seconds. In total, 10.36% of all evaluations violated the timeout with AutoTS
and AutoGluon exceeding it on nearly 33.3% of all runs worsening the re-
ported results signi�cantly. Table 2 summarizes the average performance of all
tested frameworks when the timeout is not enforced. AutoTS and AutoGluon
gained a signi�cant performance boost as they regularly exceeded the con�gured
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Table 2: Performance overview for two di�erent scenarios.

Without Missing Values Without Enforcing Timeouts
Framework MASE Ranking Time MASE Ranking Time

APT-TS 2.4± 6.1 4.7± 2.8 276.5± 109.2 3.4± 6.3 5.1± 2.5 246.3± 141.6
auto-sktime 1.0± 0.9 3.5± 1.8 327.7± 12.4 1.4± 1.6 2.9± 1.8 334.6± 54.3
AutoGluon 6.9± 23.4 6.7± 3.0 224.9± 144.9 2.8± 4.7 5.2± 2.3 585.3± 1480.3
AutoTS 4.6± 14.0 6.3± 2.0 318.7± 29.4 3.3± 10.5 4.8± 2.5 512.5± 421.4
DeepAR 16.3± 66.7 7.5± 2.5 103.0± 121.5 11.9± 51.5 7.7± 1.8 61.3± 106.0
ETS 1.4± 1.1 5.3± 2.8 0.3± 0.7 2.7± 2.9 6.3± 2.2 2.0± 7.6

HyperTS 2.4± 5.9 5.3± 2.5 311.0± 54.3 2.5± 5.8 4.0± 2.8 342.0± 155.5
pmdarima 1.2± 1.1 4.5± 3.1 51.3± 86.0 2.9± 4.6 5.8± 2.6 88.6± 291.3
PyAF 2.3± 5.9 4.4± 2.9 36.4± 70.1 3.6± 6.3 5.9± 2.4 23.4± 61.6
TFT 13.3± 65.7 6.7± 2.5 129.1± 130.1 10.2± 50.7 7.2± 1.8 76.9± 118.2

Table 3: Performance of auto-sktime variants.

Framework MASE Ranking Time

APT-TS 2.67± 3.45 3.44± 1.61 242.2± 134.9

auto-sktime 1.54± 1.60 2.23± 1.20 326.1± 43.4
Templates 3.21± 9.02 3.41± 1.15 324.9± 43.4
Templates & Multi-Fidelity 1.99± 2.22 3.19± 1.26 326.7± 44.3
Templates & Warm Starting 2.16± 3.12 2.73± 1.24 327.5± 44.0

timeout on larger time series. Similarly, HyperTS's and auto-sktime's perfor-
mance also slightly improved. The remaining frameworks basically never utilized
the con�gured optimization budget fully and consequently also did not improve
their performance. Even so ETS only achieves a mediocre ranking, it is still
able to beat some of the contestants in a fraction of the computational budget,
proving the value of considering statistical forecasting methods.

In both examined alternative scenarios, auto-sktime still obtains the best
average performance even though di�erences are often not signi�cant anymore.
Yet, in all scenarios, auto-sktime still achieves the overall best ranking.

4.3 Ablation Study

In Section 3.2�3.4, we proposed three potential AutoML improvements for time
series forecasting. To study their impact, we perform an ablation study by intro-
ducing three variants of auto-sktime: Templates using only the templating
approach, Templates & Multi-Fidelity using templating and multi-�delity
approximations but not warm-starting, and Templates & Warm-Starting

using templating and warm-starting but not multi-�delity. These three variants
are evaluated on the same datasets as the other forecasting frameworks and com-
pared with the original auto-sktime version, including all proposed improve-
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ments. We also provide the performance of Auto-PyTorch, the second-best
method, as a reference for assessing the impact of the di�erent versions.

As shown in Table 3, the templating base version performs worse than Auto-
PyTorch. Adding either multi-�delity approximations or warm-starting im-
proves the performance signi�cantly, with both versions outperforming Auto-
PyTorch. By combining all three improvements, the performance of auto-
sktime is again slightly improved, making all three proposed improvements
useful for time series forecasting.

5 Conclusion and Limitation

By adapting existing AutoML techniques to the domain of time series forecast-
ing, instead of just applying techniques developed for tabular data, we were able
to outperform existing AutoML frameworks for time series forecasting. auto-
sktime proved to be viable for forecasting on a wide variety of time series data,
i.e., univariate, multivariate, and panel data with or without exogenous data.
The ablation study showed that a combination of at least two proposed adapta-
tions of AutoML techniques for time series forecasting are necessary to outper-
form the current SOTA while using templating, multi-�delity approximations
and warm-starting together yields an even better performance.

During the experiments, we were able to show that a robust handling of
common data errors is important for good performance. Yet, while we strove
for end-to-end automation of forecasting, auto-sktime is still not applicable to
time series with arbitrary data defects. For example, auto-sktime is currently
not able to handle measurements collected with an irregular frequency. We plan
to overcome this and similar common data defects in the near future.

Besides forecasting, time series are also relevant for other learning tasks like,
for example, time series classi�cation or regression. While the presented frame-
work was already used successfully for time series regression in the context of
remaining useful life predictions of mechanical systems [51], further work to val-
idate the usefulness of auto-sktime on a variety of domains is necessary.
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